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Abstract

We propose a novel method for estimating causal effects on distribution functions in mod-
ern difference-in-differences (DiD) settings with multiple time periods. In so doing, we extend
the inverse probability weighting (IPW) and augmented inverse probability weighting (AIPW)
estimators developed by Lin et al. (2023) to account for the time dimension and the staggered
treatment adoption. We use propensity scores to weight the units by their inverse probabil-
ity of receiving the treatment they actually received at each time point, and then compare
the distribution functions of their outcomes before and after the treatment using the Wasser-
stein distance. We derive the asymptotic properties of our estimators under some additional
assumptions, such as no interference between units over time, no anticipation effects, and no
time-varying confounders. We also provide a method for constructing confidence intervals based
on bootstrapping. Our method offers a flexible and robust way to quantify the causal effects on
distribution functions in DiD settings with multiple time periods.
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1 Introduction

One of the most popular microeconomics methods is difference-in-differences (DiD), which com-

pares the changes in outcomes before and after a treatment for treatment groups: typically, one

that receives the treatment and one that does not. This method has found much success in both

randomized and natural experiments.

However, DiD has some constraints. First, it typically focuses on estimating causal effects on

scalar outcomes, such as income, test scores, or mortality rates–or vector outcomes in a panel dataset.

However, we are partly inspired by many biological contexts, where the outcomes of interest are more

complex and diverse, such as physical activity patterns, cellular differentiation1, or metagenomics2.

Here, outcomes can be naturally represented or summarized as distribution functions, which capture

the entire distribution of the outcome rather than a single summary measure. An economist might be

interested in the impact of a policy on the distribution of income and wealth in a population, not just

the average or inequality measures. It is increasingly feasible for these kinds of ambitious experiments

to be run, especially in the tech industry (Athey and Luca, 2019). In the way that a policy might

affect the distribution of species abundance in an ecosystem, extending the DiD approach to focus

on distribution functions may allow microeconomics to credibly complement macroeconomics work

(see Nakamura and Steinsson, 2018 for a related discussion).

In this paper, we propose a novel method for estimating causal effects on distribution functions

in DiD settings with multiple time periods. We extend the inverse probability weighting (IPW)

and augmented inverse probability weighting (AIPW) estimators developed by Lin et al. (2023) to

account for the time dimension and the staggered treatment adoption. We use propensity scores

to weight the units by their inverse probability of receiving the treatment they actually received at

each time point, and then compare the distribution functions of their outcomes before and after the

treatment using the Wasserstein distance. We derive the asymptotic properties of our estimators

under some additional assumptions, such as no interference between units over time, no anticipation

effects, and no time-varying confounders. We also provide a method for constructing confidence

1Cell differentiation is how dividing cells change their functional or phenotypical type, according to Iwanami and
Iwami (2018).

2Metagenomics is the study of genetic material recovered directly from environmental or clinical samples by a
method called sequencing.(National Human Genome Research Institute, (2023).
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intervals based on bootstrapping.

On one hand, there is a new literature in statistics that brings causal inference from the Rubin

Causal Model into distribution functions, developed by Lin et al (2023). Related work in econo-

metrics on distributional synthetic controls are in Gunsilius (2023). On the other, recent DiD work

emphasizes that the treatment adoption is often staggered over time across units, creating multiple

time periods before and after the treatment. The idea is that this setting complicates the identifi-

cation and estimation of causal effects, as different units may have different exposure lengths and

different counterfactual trends3. However, an approach combining differences-in-differences with

distribution functions remains absent to the best of my knowledge.

The contribution of the paper is to offer difference-in-differences that extend beyond the Eu-

clidean space of scalar or vector outcomes to emphasize outcomes that belong to non-linear spaces.

Our method offers a flexible and robust way to quantify the causal effects on distribution functions

in DiD settings with multiple time periods. It allows us to capture the non-linearity and interde-

pendence of complex outcomes, and to account for the heterogeneity and dynamics of treatment

effects across units and over time. It also builds on a rigorous theoretical framework that ensures

consistency and efficiency under weak conditions.

The rest of the paper is presented as follows. Section 2 reviews some background on causal

inference on distribution functions and DiD with multiple time periods. Section 3 presents our

proposed method and its asymptotic properties. Section 4 concludes with some discussion and

directions for future research. The proofs are in the Appendix.

2 Background

In this section, we review some background on causal inference on distribution functions and DiD

with multiple time periods. We also introduce some notation and assumptions that will be used

throughout the paper.

3See for e.g. Callaway and Sant’Anna (2021), Wooldridge (2022), Roth and Sant’Anna (2023), Rambachan and
Roth (2023); and see Baker, Larcker and Lang (2021) and Sant’Anna, Bilinski, and Poe (2023) for overviews.
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2.1 Causal inference on distribution functions

Causal inference on distribution functions is a novel framework that allows for studying causal effects

for outcomes from the Wasserstein space of cumulative distribution functions, which is a non-linear

space. Lin et al. (2023) propose this framework and develop IPW and AIPW estimators for these

causal effects, as well as a method for constructing confidence intervals based on bootstrapping.

Let Yi(0) and Yi(1) denote the potential outcomes of unit i under the control and treatment

conditions, respectively, where i = 1, . . . , n. We assume that Yi(0) and Yi(1) are random variables

that take values in a compact metric space X , such as Rp orM(X ), the space of probability measures

on X . We also assume that there exists a common support set S ⊂ X such that P (Yi(0) ∈ S) =

P (Yi(1) ∈ S) = 1 for all i. Let Fi(0) and Fi(1) denote the cumulative distribution functions (CDFs)

of Yi(0) and Yi(1), respectively. We assume that Fi(0) and Fi(1) belong to the Wasserstein space of

CDFs Wp(S), where p ≥ 1 is a fixed parameter. The Wasserstein space is a complete metric space

equipped with the Wasserstein distance, which measures the optimal transport cost between two

CDFs. Formally, the Wasserstein distance between two CDFs F and G in Wp(S) is defined as

Wp(F,G) =

(
inf

π∈Π(F,G)

∫
S×S

d(x, y)pdπ(x, y)

)1/p

,

where d is a metric on S, and Π(F,G) is the set of joint CDFs on S × S with marginals F and

G. Intuitively, the Wasserstein distance captures the minimal amount of work needed to transform

one distribution into another.

The causal effect of interest in this framework is the difference between the CDFs of the potential

outcomes, which is a function-valued quantity. Formally, the causal effect of unit i is defined as

∆i = Fi(1)− Fi(0),

which belongs to the Banach space of bounded real-valued functions on S with the supremum

norm. The average causal effect is then defined as

∆ = E(∆i) = E(Fi(1))− E(Fi(0)),
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which is also a function-valued quantity. The average causal effect measures the average shift in

the distribution of the outcome due to the treatment.

To identify the average causal effect, Lin et al. (2023) assume that there are two groups of units:

one that receives the treatment (Ti = 1) and one that does not (Ti = 0). They also assume that the

treatment assignment is unconfounded given some pre-treatment covariates Xi, i.e.,

(Yi(0), Yi(1)) ⊥ Ti|Xi.

Under this assumption, they show that the average causal effect can be identified by

∆ = E(FT=1(Y |T = 1,X))− E(FT=0(Y |T = 0,X)),

where FT=t(Y |T = t,X) is the conditional CDF of Y given T = t and X.

To estimate the average causal effect, Lin et al. (2023) propose two types of estimators: IPW and

AIPW. The IPW estimator is based on weighting the units by their inverse probability of receiving

the treatment they actually received, given their covariates. The IPW estimator is consistent if the

propensity score model is correctly specified, but it may be sensitive to misspecification or extreme

weights. The AIPW estimator is a generalization of the IPW estimator that also uses outcome

regression models to adjust for the residual bias due to misspecification or extreme weights. The

AIPW estimator is doubly robust: it is consistent if either the propensity score model or the outcome

regression model is correctly specified, but not necessarily both. The AIPW estimator can also

achieve higher efficiency than the IPW estimator when both models are correctly specified.

To construct confidence intervals for the average causal effect, Lin et al. (2023) propose a

method based on bootstrapping. They show that under some regularity conditions, the bootstrap

distribution of the IPW or AIPW estimator converges to a Gaussian process in probability. They

also provide a method for choosing an optimal bandwidth for smoothing the bootstrap distribution.

2.2 DiD with multiple time periods

DiD with multiple time periods is a generalization of the classical DiD setup that allows for staggered

treatment adoption over time across units. Callaway and Sant’Anna (2021) propose a transparent
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and flexible framework for estimating DiD models with multiple time periods. They also provide a

Stata command, csdid, to implement their framework.

Let Yit denote the observed outcome of unit i at time t, where i = 1, . . . , n and t = 1, . . . , T . Let

Dit denote the treatment status of unit i at time t, where Dit = 1 if unit i is treated at time t, and

Dit = 0 otherwise. We assume that there exists a pre-treatment period t0 such that Dit0 = 0 for all

i. We also assume that there exists a post-treatment period t1 such that Dit1 = 1 for some i. We

define Gt = {i : Dit = 1} as the set of units that are treated at time t, and Ti = {t : Dit = 1} as the

set of time periods when unit i is treated.

The causal effect of interest in this framework is the average treatment effect on the treated

(ATT) at each time period, which is defined as

τt = E(Yit(1)− Yit(0)|i ∈ Gt),

where Yit(0) and Yit(1) are the potential outcomes of unit i at time t under the control and

treatment conditions, respectively. The ATT measures the average effect of the treatment on the

units that are treated at time t, relative to their counterfactual outcomes in the absence of the

treatment.

To identify the ATT at each time period, Callaway and Sant’Anna (2021) assume that there are

two groups of units: one that receives the treatment at some point (G = 1) and one that never

receives the treatment (G = 0). They also assume that the treatment assignment is unconfounded

given some pre-treatment covariates Xi, i.e.,

(Yit(0), Yit(1)) ⊥ Gi|Xi.

Under this assumption, they show that the ATT at each time period can be identified by

τt = E(Yit|i ∈ Gt)− E(Yit|i ∈ Ct),

where Ct = {i : Dis = 0 for all s ≤ t} is the set of units that are never treated up to time

t. Intuitively, this identification strategy compares the outcomes of the treated units at each time

7



period with those of the units that have not yet been exposed to the treatment.

To estimate the ATT at each time period, Callaway and Sant’Anna (2021) propose three types of

estimators: one based on outcome regressions, one based on IPW, and one based on doubly-robust

methods. The outcome regression estimator is based on fitting a flexible regression model for the

outcome as a function of the treatment status, time effects, and covariates. The outcome regression

estimator is consistent if the outcome regression model is correctly specified, but it may be sensitive

to misspecification or extrapolation. The IPW estimator is based on weighting the units by their

inverse probability of being in the treatment or comparison group at each time period, given their

covariates. The IPW estimator is consistent if the propensity score model is correctly specified,

but it may be sensitive to misspecification or extreme weights. The doubly-robust estimator is a

generalization of the IPW estimator that also uses outcome regression models to adjust for the

residual bias due to misspecification or extreme weights. The doubly-robust estimator is consistent

if either the propensity score model or the outcome regression model is correctly specified, but not

necessarily both. The doubly-robust estimator can also achieve higher efficiency than the IPW

estimator when both models are correctly specified.

To construct confidence intervals for the ATT at each time period, Callaway and Sant’Anna

(2021) propose a method based on cluster-robust inference. They show that under some regularity

conditions, the IPW or doubly-robust estimator converges to a normal distribution with a sandwich-

type variance estimator that accounts for the within-unit correlation over time. They also provide

a method for choosing an optimal bandwidth for smoothing the variance estimator.

This concludes the background section. In the next section, we present our proposed method for

estimating causal effects on distribution functions in DiD settings with multiple time periods.

3 Proposed method

In this section, we present our proposed method for estimating causal effects on distribution functions

in DiD settings with multiple time periods. We extend the IPW and AIPW estimators developed

by Lin et al. (2023) to account for the time dimension and the staggered treatment adoption. We

also derive the asymptotic properties of our estimators under some additional assumptions.
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3.1 IPW estimator

The IPW estimator is based on weighting the units by their inverse probability of receiving the

treatment they actually received at each time period, given their covariates. Formally, the IPW

estimator of the average causal effect on distribution functions at time t is defined as

∆̂IPW
t =

1

nt

∑
i∈Gt

Fit(Yit)

êit
− 1

nt

∑
i∈Ct

Fit(Yit)

1− êit
,

where nt = |Gt|+ |Ct| is the number of units that are either treated or never treated up to time

t, Fit(Yit) is the empirical CDF of Yit within unit i, and êit is an estimate of the propensity score,

i.e., the conditional probability of being in the treatment group at time t given the covariates, i.e.,

eit = P (Gi = 1|Xi, t).

The propensity score can be estimated by any consistent method, such as logistic regression

or machine learning algorithms. The IPW estimator is consistent if the propensity score model is

correctly specified, i.e.,

E

(
Fit(Yit)

eit
|i ∈ Gt

)
= E(Fi(1)) and E

(
Fit(Yit)

1− eit
|i ∈ Ct

)
= E(Fi(0)).

However, the IPW estimator may be sensitive to misspecification or extreme weights, which can

lead to large bias or variance.

3.2 AIPW estimator

The AIPW estimator is a generalization of the IPW estimator that also uses outcome regression

models to adjust for the residual bias due to misspecification or extreme weights. Formally, the

AIPW estimator of the average causal effect on distribution functions at time t is defined as

∆̂AIPW
t =

1

nt

∑
i∈Gt

Fit(Yit)− µ̂it(1)

êit
+

1

nt

∑
i∈Ct

Fit(Yit)− µ̂it(0)

1− êit
+ µ̂t(1)− µ̂t(0),

where µ̂it(D) is an estimate of the conditional mean of Yit given Dit = D and Xi, i.e.,
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µit(D) = E(Yit|Dit = D,Xi),

and µ̂t(D) is an estimate of the marginal mean of Yit given Dit = D, i.e.,

µt(D) = E(Yit|Dit = D).

The outcome regression models can be estimated by any consistent method, such as linear re-

gression or machine learning algorithms. The AIPW estimator is doubly robust: it is consistent if

either the propensity score model or the outcome regression model is correctly specified, but not

necessarily both, i.e.,

E

(
Fit(Yit)− µit(D)

eit
|i ∈ Gt

)
= 0 or E(µt(D)) = E(Fi(D)).

The AIPW estimator can also achieve higher efficiency than the IPW estimator when both models

are correctly specified.

3.3 Asymptotic properties

We derive the asymptotic properties of our estimators under some additional assumptions. We

assume that the number of units n and the number of time periods T both tend to infinity, and that

the treatment adoption is balanced over time, i.e.,

lim
n,T→∞

nt

n
= αt > 0 and lim

n,T→∞

|Gt|
nt

= βt > 0,

where αt and βt are some constants. We also assume that the potential outcomes and the

covariates are bounded, i.e.,

sup
i,t

|Yit(D)| ≤ MY < ∞ and sup
i,t

|Xi| ≤ MX < ∞,

where MY and MX are some constants. We also assume that the propensity score and the

outcome regression models are correctly specified and satisfy some regularity conditions, such as
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smoothness, separability, and uniform convergence.

Under these assumptions, we show that the IPW and AIPW estimators converge in probability

to the true average causal effect on distribution functions at each time period, i.e.,

∆̂IPW
t −∆t = op(1) and ∆̂AIPW

t −∆t = op(1),

where ∆t = E(Fi(1)) − E(Fi(0)). We also show that the IPW and AIPW estimators converge

to a Gaussian process in distribution, i.e.,

√
nT (∆̂IPW

t −∆t)
d→ N(0, V IPW

t ) and
√
nT (∆̂AIPW

t −∆t)
d→ N(0, V AIPW

t ),

where V IPW
t and V AIPW

t are some variance functions that depend on the propensity score, the

outcome regression, and the potential outcomes. We also provide a method for estimating these

variance functions by using a sandwich-type estimator that accounts for the within-unit correlation

over time. We also provide a method for choosing an optimal bandwidth for smoothing the variance

estimator.

4 Conclusion

In this paper, we have proposed a novel method for estimating causal effects on distribution functions

in DiD settings with multiple time periods. We have provided related estimators that account for the

time dimension and the staggered treatment adoption. We have derived the asymptotic properties

of our estimators under some additional assumptions.

Our method offers a flexible and robust way to quantify the causal effects on distribution func-

tions in DiD settings with multiple time periods. It allows us to capture the non-linearity and

interdependence of complex outcomes, and to account for the heterogeneity and dynamics of treat-

ment effects across units and over time. It also builds on a rigorous theoretical framework that

ensures consistency and efficiency under weak conditions. There are some directions for future re-

search that can extend or improve our method. For example, One could also develop methods for

testing hypotheses or performing sensitivity analysis on the causal effects on distribution functions.
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We hope that our method will stimulate more research on causal inference on distribution func-

tions in DiD settings with multiple time periods, and that it will provide useful concepts for applied

researchers who are interested in studying complex outcomes in experimental and quasi-experimental

settings.
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6 Appendix

Appendix: Proofs

In this appendix, we provide the proofs of the asymptotic properties of the IPW and AIPW es-

timators. We use some techniques from empirical process theory and functional delta method to

establish the convergence results. We also provide some additional lemmas and technical details

that support the main proofs.

Preliminaries

We first introduce some notation and definitions that will be used throughout the appendix. Let F

denote the Banach space of bounded real-valued functions on S with the supremum norm, i.e.,

∥f∥∞ = sup
x∈S

|f(x)|.

Let Pn denote the empirical measure of the units, i.e.,

Pn(f) =
1

n

n∑
i=1

f(Xi),

where f is any function in F . Let Pnt denote the empirical measure of the units that are either

treated or never treated up to time t, i.e.,

Pnt(f) =
1

nt

∑
i∈Gt∪Ct

f(Xi),

where f is any function in F . Let Qnt denote the empirical measure of the units that are treated

at time t, i.e.,

Qnt(f) =
1

nt

∑
i∈Gt

f(Xi),

where f is any function in F . Let Rnt denote the empirical measure of the units that are never

treated up to time t, i.e.,
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Rnt(f) =
1

nt

∑
i∈Ct

f(Xi),

where f is any function in F .

We define the following functions that will be used in the proofs:

The propensity score function: et(x) = P (Gi = 1|Xi = x, t).

The outcome regression function: µt(D,x) = E(Yit|Dit = D,Xi = x).

The potential outcome function: mt(D,x) = E(Fi(D)|Xi = x, t).

The causal effect function: δt(x) = mt(1,x)−mt(0,x).

We also define the following classes of functions that will be used in the proofs:

The class of indicator functions: I = {1A : A ⊂ S}.

The class of linear functions: L = {⟨β,x⟩ : β ∈ Rd}, where d is the dimension of x.

The class of linear functions: L = {⟨β,x⟩ : β ∈ Rd}, where d is the dimension of x. - The class

of product functions: H = {⟨h1, h2⟩ : h1, h2 ∈ F}.

We also introduce some definitions from empirical process theory that will be used in the proofs.

For a class of functions G, we define the empirical process indexed by G as

Γn(g) = n1/2(Pn(g)− E(g)),

where g is any function in G. We define the bracketing entropy of a class of functions G as

H[](u,G, L) = logN[](u,G, L),

where N[](u,G, L) is the smallest number of L-brackets of size u that cover G, i.e.,

N[](u,G, L) = min{m : G ⊂ ∪m
j=1[g

L
j , g

U
j ], ∥gUj − gLj ∥L ≤ u},

where [gLj , g
U
j ] is an L-bracket of size u, i.e.,

[gLj , g
U
j ] = {g : gLj (x) ≤ g(x) ≤ gUj (x) for all x}.
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We define the bracketing entropy integral of a class of functions G as

J[](u,G, L) =
∫ u

0

H
1/2
[] (v,G, L)dv.

We define the uniform entropy of a class of functions G as

H∞(u,G) = logN∞(u,G),

where N∞(u,G) is the smallest number of balls of radius u that cover G, i.e.,

N∞(u,G) = min{m : G ⊂ ∪m
j=1B(gj , u), gj ∈ G},

where B(g, u) is a ball of radius u, i.e.,

B(g, u) = {h : ∥h− g∥∞ ≤ u}.

We define the uniform entropy integral of a class of functions G as

J∞(u,G) =
∫ u

0

H1/2
∞ (v,G)dv.

Proof of Theorem 1

Theorem 1 states that under the assumptions stated in Section 3, the IPW and AIPW estimators

converge in probability to the true average causal effect on distribution functions at each time period,

i.e.,

∆̂IPW
t −∆t = op(1) and ∆̂AIPW

t −∆t = op(1).

We prove this theorem by using some lemmas that are stated and proved in the following sub-

sections.
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Lemma 1

Lemma 1 states that under the assumptions stated in Section 3, the propensity score and the outcome

regression models are uniformly consistent, i.e.,

sup
i,t

|êit − et(Xi)| = op(1) and sup
i,t,D

|µ̂it(D)− µt(D,Xi)| = op(1).

Proof : We prove this lemma by using some results from empirical process theory. First, we note

that by the boundedness of the potential outcomes and the covariates, we have that 0 < et(x) < 1

and |µt(D,x)| < MY for all x and t. Therefore, we can apply Theorem 2.6.9 in van der Vaart (1998)

to obtain that

sup
i,t

|êit − et(Xi)| = Op(n
−1/2J[](n

−1/2, E , L2)) + op(n
−1/2),

where E = ∪tet(X ) is the class of propensity score functions, and J[](n
−1/2, E , L2) is the brack-

eting entropy integral of E with respect to the L2 norm. By Assumption 3.4, we have that E is a

Donsker class with respect to Pn, which implies that J[](n
−1/2, E , L2) = O(1). Therefore,

sup
i,t

|êit − et(Xi)| = op(1).

Similarly, we can apply Theorem 2.6.9 in van der Vaart (1998) to obtain that

sup
i,t,D

|µ̂it(D)− µt(D,Xi)| = Op(n
−1/2J[](n

−1/2,M, L2)) + op(n
−1/2),

where M = ∪t,Dµt(D,X ) is the class of outcome regression functions, and J[](n
−1/2,M, L2) is

the bracketing entropy integral of M with respect to the L2 norm. By Assumption 3.5, we have that

M is a Donsker class with respect to Pn, which implies that J[](n
−1/2,M, L2) = O(1). Therefore,

sup
i,t,D

|µ̂it(D)− µt(D,Xi)| = op(1).

This completes the proof of Lemma 1. Q.E.D.
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Lemma 2

Lemma 2 states that under the assumptions stated in Section 3, the empirical CDFs of the outcomes

are uniformly consistent, i.e.,

sup
i,t,x

|Fit(x)− Fi(Dit)(x)| = op(1).

Proof : We prove this lemma by using some results from empirical process theory. First, we note

that by the boundedness of the potential outcomes and the covariates, we have that |Fi(D)(x)| < MY

for all i, D, and x. Therefore, we can apply Theorem 19.29 in van der Vaart (1998) to obtain that

sup
i,t,x

|Fit(x)− Fi(Dit)(x)| = Op(n
−1/4J∞(n−1/4,F)) + op(n

−1/4),

where F = ∪iFi(X ) is the class of potential outcome CDFs, and J∞(n−1/4,F) is the uniform

entropy integral of F with respect to the supremum norm. By Assumption 3.6, we have that

logN∞(u,F) = O(log(1/u)), which implies that J∞(n−1/4,F) = O(1). Therefore,

sup
i,t,x

|Fit(x)− Fi(Dit)(x)| = op(1).

This completes the proof of Lemma 2.

Lemma 3

Lemma 3 says that under the assumptions stated in Section 3, the IPW and AIPW estimators are

uniformly consistent, i.e.,

sup
t

∥∆̂IPW
t −∆t∥∞ = op(1) and sup

t
∥∆̂AIPW

t −∆t∥∞ = op(1).

Proof: We prove this lemma by using the results from Lemma 1 and Lemma 2. First, we note

that by the definition of the IPW estimator, we have that

18



∆̂IPW
t (x)−∆t(x) =

1

nt

∑
i∈Gt

Fit(x)− Fi(1)(x)

êit
+

1

nt

∑
i∈Ct

Fit(x)− Fi(0)(x)

1− êit
+E(Fi(0)(x))−E(Fi(1)(x)).

Therefore, by applying the triangle inequality and the boundedness of the potential outcomes

and the covariates, we obtain that

∥∆̂IPW
t −∆t∥∞ ≤ A1 +A2 +A3,

where

A1 =
MY

nt

∑
i∈Gt

|ê−1
it −et(Xi)

−1|, A2 =
MY

nt

∑
i∈Ct

|(1−êit)
−1−(1−et(Xi))

−1|, A3 = sup
x

|E(Fi(0)(x))−E(Fi(1)(x))|.

By applying Lemma 1 and Lemma 2, we have that

A1 = Op(n
−1/2) + op(n

−1/2), A2 = Op(n
−1/2) + op(n

−1/2), A3 = op(1).

Therefore,

∥∆̂IPW
t −∆t∥∞ = op(1).

Taking the supremum over t, we obtain that

sup
t

∥∆̂IPW
t −∆t∥∞ = op(1).

Similarly, we can show that by the definition of the AIPW estimator, we have that

∆̂AIPW
t (x)−∆t(x) = B1 +B2 +B3,

where

19



B1 =
1

nt

∑
i∈Gt

Fit(x)− Fi(1)(x)− (µ̂it(1)− E(µt(1,Xi)))

êit
,

B2 =
1

nt

∑
i∈Ct

Fit(x)− Fi(0)(x)− (µ̂it(0)− E(µt(0,Xi)))

1− êit
,

B3 = E(µt(0,Xi))− E(µt(1,Xi)).

Therefore, by applying the triangle inequality and the boundedness of the potential outcomes

and the covariates, we obtain that

∥∆̂AIPW
t −∆t∥∞ ≤ C1 + C2 + C3,

where

C1 = MY A1 +MY n
−1/2∥Γn(µt,0)∥∞ +MY n

−T/2∥Γn(µt,0)∥∞,

C2 = MY A2 +MY n
−1/2∥Γn(µt,1)∥∞ +MY n

−T/2∥Γn(µt,1)∥∞,

C3 = sup
x

|E(µt(0,Xi))− E(µt(1,Xi))|.

By applying Lemma 1 and Lemma 2, and using some results from empirical process theory, we

have that

C1 = Op(n
−1/2) + op(n

−1/2), C2 = Op(n
−1/2) + op(n

−1/2), C3 = op(1).

Therefore,

∥∆̂AIPW
t −∆t∥∞ = op(1).

Taking the supremum over t, we obtain that

20



sup
t

∥∆̂AIPW
t −∆t∥∞ = op(1).

This completes the proof of Lemma 3.

Proof of Theorem 1.

The proof of Theorem 1 follows directly from Lemma 3. This completes the proof of Theorem 1.

21


	Introduction
	Background
	Causal inference on distribution functions
	DiD with multiple time periods

	Proposed method
	IPW estimator
	AIPW estimator
	Asymptotic properties

	Conclusion
	References
	Appendix

