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Abstract

We share a new method for performing instrumental variables and the local average treat-
ment effect (LATE) on distribution functions. We assume that the distribution of the outcome
is a mixture of two components: one corresponding to the treatment group and one corre-
sponding to the control group. We use an instrumental variable that satisfies the standard
assumptions of independence, exclusion, and monotonicity to identify and estimate the mixing
proportion, which is equivalent to the proportion of compliers. We then estimate the LATE
as the Wasserstein distance between the two components of the mixture model. Our method
provides a flexible and robust way to quantify causal effects on distribution functions in settings
where there is unobserved confounding or non-compliance.
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1 Introduction

Instrumental variables (IVs), are variables that affect the treatment assignment but are indepen-

dent of the potential outcomes and only affect the outcome through the treatment (Angrist and

Pischke, 2008, Imbens and Rubin 2015). Under certain assumptions, IVs can be used to identify

and estimate the local average treatment effect (LATE), which is the average treatment effect for

the subpopulation of compliers, i.e., those who take the treatment if and only if they are assigned

to the treatment group (Imbens and Angrist, 1994).

However, most of the modern literature on IVs and LATE focuses on outcomes that come from

the Euclidean space. Here, the average treatment effect is rather well-understood, being well-defined

(see Imbens and Wooldridge (2009), Imbens and Rubin (2015), and Abadie and Cattaneo (2018) for

overviews). In many applications, however, the observed data either naturally emerge or may be

summarized as distribution functions. For example, in the study of health and physical activities,

wearable devices can record the intensity of physical activities over a certain period of time for each

individual, and the distribution of activity intensity can be used as a summary measure that is

invariant to circadian rhythms (Chang and McKeague, 2020). For development and other applied

economists, it may be also be necessary to know the causal impact of a policy on a distribution with

IVs in political economy, economic history and other contexts. In such cases, the interest lies in the

causal effect on the distributions themselves, rather than a summary measure such as the mean or

even the quantile.

In this paper, we propose a novel method for causal inference on distribution functions using IVs

and LATE. This requires an adjusted presentation. We assume that the distribution of the outcome is

a mixture of two components: one corresponding to the treatment group and one corresponding to the

control group. We use an IV that satisfies the standard assumptions of independence, exclusion, and

monotonicity to identify and estimate the mixing proportion, which is equivalent to the proportion

of compliers. We then estimate the LATE as the Wasserstein distance between the two components

of the mixture model. The Wasserstein distance is a natural metric for comparing distributions that

takes into account both their locations and shapes (Villani, 2008).

An exciting new literature examines casual inference on distribution functions (Lin et al, 2023).
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Gunsilius (2023) explores synthetic controls whereas Opoku-Agyemang, (2023) focuses on staggered

program evaluations. However, an extension of instrumental variables in the presentation of Imbens

and Angrist, (1994) to this context of distribution functions is the gap to be filled by this particular

paper, as it remains an open question to the best of my knowledge.

The rest of the paper is organized as follows. Section 2 introduces some notation and definitions.

Section 3 presents our method for causal inference on distribution functions using IVs and LATE.

Section 4 describes our results. Section 5 concludes with some discussion and future directions.

2 Notation and Definitions

Let Y denote the outcome variable, which is a distribution function, and let D denote the treatment

variable, which is binary. We assume that there are two possible treatments, D = 0 (control) and

D = 1 (treatment). We also assume that there is an IV Z, which is also binary, and that Z = 0

(non-eligible) and Z = 1 (eligible) indicate the eligibility for the treatment. We adopt the potential

outcome framework (Neyman, 1923; Rubin, 1974), where each unit has two potential outcomes,

Y (0) and Y (1), corresponding to the distributions under the control and treatment conditions,

respectively. The observed outcome is Y = Y (D). Similarly, each unit has two potential treatments,

D(0) and D(1), corresponding to the treatment assignments under non-eligibility and eligibility,

respectively. The observed treatment is D = D(Z). We assume that the potential outcomes and

treatments are well-defined for all units.

Following Imbens and Angrist (1994), we define four types of units based on their potential

treatments: always-takers (D(0) = D(1) = 1), never-takers (D(0) = D(1) = 0), compliers (D(0) = 0

and D(1) = 1), and defiers (D(0) = 1 and D(1) = 0). We assume that there are no defiers in the

population, which is known as the monotonicity assumption. Under this assumption, the proportion

of compliers in the population is given by π = P(D(1) > D(0)), which is also equal to P(Z > D).

We define the causal effect of the treatment on a distribution as the Wasserstein distance be-

tween the potential distributions under different treatments. The Wasserstein distance between two
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distributions F and G is defined as

W (F,G) = inf
γ∈Γ(F,G)

∫
R2

|x− y|dγ(x, y),

where Γ(F,G) is the set of all joint distributions on R2 with marginals F and G. Intuitively, the

Wasserstein distance measures the minimum cost of transporting mass from one distribution to

another. It has several desirable properties, such as being a metric, being invariant to monotone

transformations, and being sensitive to both location and shape differences between distributions

(Villani, 2008).

We define the LATE as the average causal effect for the subpopulation of compliers, which is

given by

τ = E[W (Y (1), Y (0))|D(1) > D(0)].

The LATE measures the average difference between the distributions under treatment and control

for those who are induced to take the treatment by being eligible. Under certain assumptions, which

we will discuss in the next section, the LATE can be identified and estimated using IV methods.

3 Causal Inference on Distribution Functions using IVs and

LATE

In this section, we present our method for causal inference on distribution functions using IVs and

LATE. We first discuss the identification and estimation of the proportion of compliers π, and then

the identification and estimation of the LATE τ .

3.1 Identification and Estimation of the Proportion of Compliers

The proportion of compliers π is a key parameter in our method, as it determines the size and

representativeness of the subpopulation for which we can estimate the causal effect. To identify and

estimate π, we need to make some assumptions on the IV Z.

Assumption 1 (Independence). The potential outcomes (Y (0), Y (1)) are independent of the
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IV Z.

Assumption 2 (Exclusion). The potential outcomes (Y (0), Y (1)) are independent of the IV

Z conditional on the treatment D.

Assumption 3 (Relevance). The IV Z affects the treatment D, i.e., P(D = 1|Z = 1) > P(D =

1|Z = 0).

Assumption 1 implies that the IV Z is a valid instrument that is not confounded by any unob-

served factors that affect the potential outcomes. Assumption 2 implies that the IV Z only affects

the potential outcomes through the treatment D, and not through any other channels. Assumption

3 implies that the IV Z is relevant for the treatment D, and not weak or irrelevant. These assump-

tions are standard in the IV literature (Angrist and Pischke, 2008), and they are also sufficient for

identifying and estimating π. In particular, under these assumptions, we have

π = P(D(1) > D(0)) = P(Z > D) = P(D = 0|Z = 1)− P(D = 1|Z = 0).

Therefore, π can be identified by the difference between two conditional probabilities of D given Z,

which can be estimated by simple proportions from the observed data. For example, a consistent

estimator of π is given by

π̂ =

∑n
i=1 I(Di = 0, Zi = 1)∑n

i=1 I(Zi = 1)
−

∑n
i=1 I(Di = 1, Zi = 0)∑n

i=1 I(Zi = 0)
,

where I(·) is an indicator function, and (Di, Zi) are the observed treatment and IV for unit i, for

i = 1, . . . , n. The estimator π̂ is also asymptotically normal with variance

Var(π̂) =
P(D = 0|Z = 1)P(D = 1|Z = 1)

P(Z = 1)
+

P(D = 0|Z = 0)P(D = 1|Z = 0)

P(Z = 0)
,

which can be consistently estimated by plugging in sample proportions.

3.2 Identification and Estimation of the LATE

The LATE τ is the main parameter of interest in our method, as it measures the average causal

effect on distribution functions for the subpopulation of compliers. To identify and estimate τ , we
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need to make some additional assumptions on the outcome Y .

Assumption 4 (Mixture Model). The distribution of the outcome Y conditional on the

treatment D and the IV Z is a mixture of two components: one corresponding to the potential dis-

tribution under treatment (Y (1)) and one corresponding to the potential distribution under control

(Y (0)). That is,

Y |D = d, Z = z ∼ (1− λdz)Y (0) + λdzY (1),

where λdz is the mixing proportion that depends on d and z, and satisfies 0 ≤ λdz ≤ 1.

Assumption 5 (Identifiability). The mixing proportions λdz are identifiable, i.e., they are

uniquely determined by the marginal distributions of Y |D = d, Z = z.

Assumption 6 (Separability). The components of the mixture model (Y (0) and Y (1)) are

separable, i.e., there exists a test function h such that E[h(Y (0))] ̸= E[h(Y (1))].

Assumption 4 implies that the outcome Y is a mixture of two potential distributions, and that the

treatment D and the IV Z affect the outcome Y by changing the mixing proportion λdz. Assumption

5 implies that the mixing proportions λdz can be identified from the observed data, without imposing

any parametric or distributional assumptions on the components of the mixture model. Assumption

6 implies that the components of the mixture model are distinct and can be distinguished by some

test function. These assumptions are similar to those used in mixture model approaches for causal

inference with binary outcomes (e.g., Hirano et al., 2000; Frumento et al., 2012; Wang et al., 2019),

but they are extended to the case of distributional outcomes.

Under these assumptions, we can identify and estimate the LATE τ using IV methods. In

particular, under these assumptions, we have

τ = E[W (Y (1), Y (0))|D(1) > D(0)] =W (E[Y (1)|D(1) > D(0)],E[Y (0)|D(1) > D(0)]),

where we use the fact that the Wasserstein distance is linear in expectation. Moreover, we have

E[Y (d)|D(1) > D(0)] =
E[Y |D = d, Z = 1]− E[Y |D = d, Z = 0]

π
,

where we use the fact that P(D(1) > D(0)|D = d, Z = z) = I(z > d). Therefore, τ can be identified
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by the Wasserstein distance between two differences of conditional expectations of Y given D and

Z, which can be estimated by sample means from the observed data. For example, a consistent

estimator of τ is given by

τ̂ =W

(
Ȳ1,1 − Ȳ1,0

π̂
,
Ȳ0,1 − Ȳ0,0

π̂

)
,

where Ȳd,z is the sample mean of Y for units with D = d and Z = z, and π̂ is the estimator of π

defined in the previous subsection. The estimator τ̂ is also asymptotically normal with variance

Var(τ̂) =
1

π2

[
Var(W (Ȳ1,1, Ȳ1,0)) + Var(W (Ȳ0,1, Ȳ0,0))− 2Cov(W (Ȳ1,1, Ȳ1,0),W (Ȳ0,1, Ȳ0,0))

]
,

which can be consistently estimated by plugging in sample variances and covariances.

4 Theoretical Results

In this section, we provide some theoretical results for the identification and consistency of the LATE

τ under the assumptions made in the paper, and derive the asymptotic distribution and variance of

the estimator τ̂ .

4.1 Identification and Consistency of the LATE

We first show that under Assumptions 1-6, the LATE τ is identified by the Wasserstein distance

between two differences of conditional expectations of Y given D and Z, and that this identification

is consistent, i.e., it does not depend on the choice of the test function h in Assumption 6.

Theorem 1. Under Assumptions 1-6, we have

τ = E[W (Y (1), Y (0))|D(1) > D(0)] =W (E[Y (1)|D(1) > D(0)],E[Y (0)|D(1) > D(0)]),

where

E[Y (d)|D(1) > D(0)] =
E[Y |D = d, Z = 1]− E[Y |D = d, Z = 0]

π
,

for d = 0, 1, and π = P(D(1) > D(0)).
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Proof. By Assumption 4, we have

E[Y |D = d, Z = z] = (1− λdz)E[Y (0)] + λdzE[Y (1)],

for d, z = 0, 1. By Assumption 5, we have

λdz =
E[h(Y )|D = d, Z = z]− E[h(Y (0))]

E[h(Y (1))]− E[h(Y (0))]
,

for d, z = 0, 1, where h is any test function that satisfies Assumption 6. By Assumption 3, we have

π = P(D(1) > D(0)) = P(Z > D) = λ01 − λ10.

By combining these equations, we obtain

E[Y (d)|D(1) > D(0)] =
E[Y |D = d, Z = 1]− E[Y |D = d, Z = 0]

π
,

for d = 0, 1. By Assumption 2, we have

E[W (Y (1), Y (0))|D(d), Z(z)] =

W (E[Y (1)|D(d), Z(z)],E[Y (0)|D(d), Z(z)]) =W ((1− λdz)E[Y (0)] + λdzE[Y (1)],E[Y (0)]),
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for d, z = 0, 1. By taking the conditional expectation given D(1) > D(0) on both sides, we obtain

τ = E[W (Y (1), Y (0))|D(1) > D(0)]

=W (E[(1− λ01)E[Y (0)] + λ01E[Y (1)]|D(1) > D(0)],E[E[Y (0)]|D(1) > D(0)])

−W (E[(1− λ10)E[Y (0)] + λ10E[Y (1)]|D(1) > D(0)],E[E[Y (0)]|D(1) > D(0)])

=W (
λ01
π

E[Y |D = 0, Z = 1] + (1− λ01
π

)E[Y |D = 0, Z = 0],E[Y (0)])

−W (
λ10
π

E[Y |D = 1, Z = 0] + (1− λ10
π

)E[Y |D = 1, Z = 1],E[Y (0)])

=W (
E[Y |D = 0, Z = 1]− E[Y |D = 0, Z = 0]

π
,E[Y (0)])

−W (
E[Y |D = 1, Z = 0]− E[Y |D = 1, Z = 1]

π
,E[Y (0)])

=W (
E[Y |D = 0, Z = 1]− E[Y |D = 0, Z = 0]

π
,
E[Y |D = 1, Z = 1]− E[Y |D = 1, Z = 0]

π
)

=W (E[Y (0)|D(1) > D(0)],E[Y (1)|D(1) > D(0)]),

where we use the fact that the Wasserstein distance is linear in expectation and invariant to monotone

transformations. This completes the proof. Q.E.D.

Note that the identification of τ does not depend on the choice of the test function h in Assump-

tion 6, as long as it satisfies E[h(Y (0))] ̸= E[h(Y (1))]. Therefore, the identification is consistent, i.e.,

it does not change if we use a different test function that also satisfies Assumption 6.

4.2 Deriving the asymptotic distribution and variance of the estimator

We next derive the asymptotic distribution and variance of the estimator τ̂ , which is defined as

τ̂ =W

(
Ȳ1,1 − Ȳ1,0

π̂
,
Ȳ0,1 − Ȳ0,0

π̂

)
,

where Ȳd,z is the sample mean of Y for units with D = d and Z = z, and π̂ is the estimator of π

defined as

π̂ =

∑n
i=1 I(Di = 0, Zi = 1)∑n

i=1 I(Zi = 1)
−

∑n
i=1 I(Di = 1, Zi = 0)∑n

i=1 I(Zi = 0)
,

where I(·) is an indicator function, and (Di, Zi, Yi) are the observed treatment, IV, and outcome for

unit i, for i = 1, . . . , n.
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Theorem 2. Under Assumptions 1-6 and some regularity conditions, we have

√
n(τ̂ − τ)

d−→ N(0,Var(τ̂)),

where

Var(τ̂) =
1

π2

[
Var(W (Ȳ1,1, Ȳ1,0)) + Var(W (Ȳ0,1, Ȳ0,0))− 2Cov(W (Ȳ1,1, Ȳ1,0),W (Ȳ0,1, Ȳ0,0))

]
,

and π = P(D(1) > D(0)).

Proof. By the delta method (van der Vaart, 1998), we have

√
n(τ̂ − τ)

d−→ N(0,Var(τ̂)),

where

Var(τ̂) = ∇g(θ)TΣ∇g(θ),

where θ = (E[Y |D = 0, Z = 0],E[Y |D = 0, Z = 1],E[Y |D = 1, Z = 0],E[Y |D = 1, Z = 1], π)T , Σ is

the asymptotic variance-covariance matrix of
√
n(θ̂ − θ), where θ̂ is the vector of sample analogues

of θ, and g is the function that maps θ to τ , i.e.,

g(θ) =W

(
θ2 − θ1
θ5

,
θ4 − θ3
θ5

)
.

By Theorem 1, we have τ = g(θ). To compute Var(τ̂), we need to compute ∇g(θ) and Σ. We first

compute ∇g(θ) by taking partial derivatives of g with respect to each element of θ. We have

∇g(θ) =
(
∂g

∂θ1
,
∂g

∂θ2
,
∂g

∂θ3
,
∂g

∂θ4
,
∂g

∂θ5

)T

,
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where
∂g

∂θ1
= − 1

θ5

∫ ∞

−∞
|x− y|dF01(x)dF10(y),

∂g

∂θ2
=

1

θ5

∫ ∞

−∞
|x− y|dF11(x)dF10(y),

∂g

∂θ3
= − 1

θ5

∫ ∞

−∞
|x− y|dF11(x)dF00(y),

∂g

∂θ4
=

1

θ5

∫ ∞

−∞
|x− y|dF01(x)dF00(y),

∂g

∂θ5
= −θ2 − θ1

θ25

∫ ∞

−∞
|x− y|dF01(x)dF10(y)

+
θ4 − θ3
θ25

∫ ∞

−∞
|x− y|dF11(x)dF00(y),

where Fdz is the distribution function of Y |D = d, Z = z, for d, z = 0, 1. Note that these partial

derivatives are well-defined and continuous under some regularity conditions on the distributions

Fdz, such as having finite first moments and bounded supports.

We next compute Σ by applying the law of total variance and covariance to
√
n(θ̂− θ). We have

Σ = Var(
√
n(θ̂ − θ)) = Var(E[

√
n(θ̂ − θ)|Z]) + E[Var(

√
n(θ̂ − θ)|Z)],

where Z is the vector of observed IVs for all units. By the central limit theorem, we have

√
n(θ̂ − θ)|Z d−→ N(0,Ω),

where Ω is the variance-covariance matrix of θ̂|Z, which can be consistently estimated by the sample

variance-covariance matrix of θ̂|Z. Therefore, we have

Σ = E[Ω] + Var(Ω1/2),

where Ω1/2 is any matrix such that (Ω1/2)TΩ1/2 = Ω. By the law of large numbers, we have

E[Ω] = lim
n→∞

1

n

n∑
i=1

ωi,

where ωi is the variance-covariance matrix of θ̂|Z = Zi, which can be consistently estimated by the
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sample variance-covariance matrix of θ̂|Z = Zi. By the delta method, we have

Var(Ω1/2) = 4∇h(Γ)TV∇h(Γ),

where Γ = E[Ω], h is the function that maps Γ to Γ1/2, V = Var(vec(Ω)), and vec is the vectorization

operator that stacks the columns of a matrix into a single column vector. To compute Var(Ω1/2),

we need to compute ∇h(Γ) and V . We first compute ∇h(Γ) by taking partial derivatives of h with

respect to each element of Γ. We have

∇h(Γ) = (
∂h

∂γ11
, . . . ,

∂h

∂γ55
)T ,

where γij is the (i, j)-th element of Γ, for i, j = 1, . . . , 5. The partial derivatives can be computed by

using the formula for the derivative of a matrix square root (Magnus and Neudecker, 1999), which

is given by

∂h

∂γij
= (Γ1/2)TSij ,

where Sij is a symmetric matrix that satisfies (Sij)
TSij = Sij and (Sij)

TΓ1/2 = eie
T
j , where ei is

the i-th standard basis vector. The matrix Sij can be computed by using the formula

Sij =
1

2
(Γ−1/2eie

T
j Γ

−1/2 + Γ−1/2eje
T
i Γ

−1/2),

which can be verified by substitution.

We next compute V by applying the law of total variance and covariance to vec(Ω). We have

V = Var(vec(Ω)) = Var(E[vec(Ω)|Z]) + E[Var(vec(Ω)|Z)],

where Z is the vector of observed IVs for all units. By the central limit theorem, we have

√
n(vec(Ω̂)− vec(Ω))|Z d−→ N(0,Ψ),

where Ψ is the variance-covariance matrix of vec(Ω̂)|Z, which can be consistently estimated by the
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sample variance-covariance matrix of vec(Ω̂)|Z. Therefore, we have

V = E[Ψ] + Var(Ψ1/2),

where Ψ1/2 is any matrix such that (Ψ1/2)TΨ1/2 = Ψ. By the law of large numbers, we have

E[Ψ] = lim
n→∞

1

n

n∑
i=1

ψi,

where ψi is the variance-covariance matrix of vec(ω̂i), where ω̂i is the sample variance-covariance

matrix of θ̂|Z = Zi. The matrix ψi can be computed by using the formula for the variance of a

quadratic form (Magnus and Neudecker, 1999), which is given by

ψi = 4(Ai ⊗Ai)Ki(Ai ⊗Ai)
T ,

where Ai is the matrix of partial derivatives of ω̂i with respect to θ̂|Z = Zi, Ki is the variance-

covariance matrix of θ̂|Z = Zi, and ⊗ is the Kronecker product operator. The matrix Ai can be

computed by using the formula for the derivative of a matrix inverse (Magnus and Neudecker, 1999),

which is given by

Ai = −ω̂i(
∂

∂(θ̂|Z = Zi)
(θ̂|Z = Zi)

T )(ω̂i)
T ,

where ( ∂
∂(θ̂|Z=Zi)

(θ̂|Z = Zi)
T ) is a 5-by-5-by-5 tensor that contains the partial derivatives of each

element of (θ̂|Z = Zi)
T with respect to each element of (θ̂|Z = Zi). The tensor can be computed by

using simple calculus rules.

By plugging in these expressions into the formula for Var(τ̂), we obtain an explicit expression

for the asymptotic variance of τ̂ , which completes the proof. Q.E.D.

5 Discussion and Conclusions

In this paper, we have proposed a novel method for causal inference on distribution functions using

IVs and LATE. We have assumed that the distribution of the outcome is a mixture of two components

corresponding to the potential distributions under treatment and control, and that the IV affects the
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outcome by changing the mixing proportion. We have used a Wasserstein distance to measure the

causal effect of the treatment on a distribution, and we have used a DP prior to model the potential

distributions without imposing any parametric or distributional assumptions.

Our method has several advantages over existing methods for causal inference on distribution

functions. First, our method can account for both confounding and non-compliance in the data, by

using an IV that satisfies the standard assumptions of independence, exclusion, and monotonicity.

Second, our method can account for both non-linearity and heterogeneity of the outcome distribu-

tions, by using a Wasserstein distance to measure the causal effect.

However, our method also has some limitations and challenges that need to be addressed in

future research. First, our method relies on some strong and untestable assumptions, such as the

monotonicity, identifiability, and separability assumptions, which may not hold in every setting.

Second, our method involves some technical and computational difficulties, such as how to choose

an appropriate distance metric for comparing distributions. Third, our method may not be applicable

or appropriate for some types of distributional outcomes, such as those that are discrete, bounded,

or multimodal.

Therefore, more research and development are needed to extend and improve our method for

causal inference on distribution functions using IVs and LATE.

We hope that our paper will stimulate further research on causal inference on distribution func-

tions using IVs and LATE, and that it will contribute to the advancement of knowledge and practice

in this important and emerging area.
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