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Abstract

We extend the use of pattern graphs–graphical tools to represent nonmonotone missing data
mechanisms–to two quasi-experimental settings: regression discontinuity design (RDD) and
difference-in-difference (DID). We call these credibility graphs. We show how to use pattern
graphs to derive estimators for RDD and DID parameters under nonignorable missingness, and
how to choose and justify the cutoffs for RDD and the parallel trends assumption for DID. We
also provide some theoretical results on the validity and robustness of our approach.
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1 Introduction

Nonmonotone missing data, where the missingness of some variables depends on the values or

missingness of other variables, poses a challenge for causal inference in many settings. In particular,

when the missingness is nonignorable, meaning that it depends on the unobserved values of the

variables, standard methods such as complete case analysis or mean imputation can lead to biased

and inconsistent estimates of causal effects. Chen et al (2022) introduced the concept of pattern

graphs, which are graphical tools to represent how response patterns are associated in nonmonotone

missing data problems. They showed how to use pattern graphs to formulate selection models and

pattern mixture models, which are two common ways to deal with nonignorable missingness, and how

to derive inverse probability weighting estimators, imputation-based estimators, and multiply-robust

estimators using pattern graphs.

In this paper, we extend the use of pattern graphs to two quasi-experimental settings: regression

discontinuity design (RDD) and difference-in-difference (DID). We call these credibility graphs. RDD

and DID are widely used methods to estimate causal effects in situations where randomization is

not feasible, but they rely on certain assumptions that may be violated by nonmonotone missing

data. We show how to use pattern graphs to derive estimators for RDD and DID parameters under

nonignorable missingness, and how to choose and justify the cutoffs for RDD and the parallel trends

assumption for DID. We also provide some theoretical results on the validity and robustness of our

approach.

The rest of the paper is organized as follows. Section 2 reviews some basic concepts and notation

for pattern graphs and nonmonotone missing data. Section 3 presents our method for using pattern

graphs to estimate RDD parameters under nonignorable missingness, and discusses how to choose

and justify the cutoffs. Section 4 presents our method for using pattern graphs to estimate DID

parameters under nonignorable missingness, and discusses how to check and justify the parallel

trends assumption. Section 5 provides some theoretical results on the identification and efficiency

of our estimators. Section 6 concludes with some limitations and directions for future research.
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2 Preliminaries

In this section, we review some basic concepts and notation for pattern graphs and nonmonotone

missing data. We follow the framework and terminology of Chen et al (2022), and refer the reader

to their paper for more details and examples.

Let Y be a p-dimensional vector of outcome variables of interest, and let R be a p-dimensional

vector of binary indicators of whether each element of Y is observed or missing. We call R the

response pattern, and we denote the set of all possible response patterns by R. For example, if

p = 3, then R = (1, 1, 1), (1, 1, 0), (1, 0, 1), (1, 0, 0), (0, 1, 1), (0, 1, 0), (0, 0, 1), (0, 0, 0). We assume

that there are n independent and identically distributed units in the data, and we use subscripts

i = 1, ..., n to index them. We also use superscripts j = 1, ..., p to index the elements of Y and R.

A pattern graph is a directed acyclic graph (DAG) where the nodes are the response patterns in

R and the edges or arrows represent the relationship between the selection probability of patterns.

The selection probability of a pattern r is defined as Pr(R = r), which is the probability that a

unit has that pattern. A pattern graph encodes an identifying restriction that is nonparametrically

identified/saturated and is often a missing not at random restriction. A missing not at random

restriction means that the missingness of some variables depends on their unobserved values.

A pattern graph has two types of nodes: root nodes and non-root nodes. A root node is a

node that has no incoming edges, meaning that its selection probability does not depend on any

other patterns. A non-root node is a node that has at least one incoming edge, meaning that its

selection probability depends on one or more other patterns. A pattern graph also has two types of

edges: direct edges and indirect edges. A direct edge is an edge from r to r′ where r and r′ differ

by exactly one element. A direct edge represents a conditional selection probability of the form

Pr(Rj = rj|R− j = r − j), where R− j denotes all elements of R except for Rj. An indirect edge

is an edge from r to r′ where r and r′ differ by more than one element. An indirect edge represents

a product of conditional selection probabilities along a path from r to r′.

A pattern graph can be used to formulate selection models and pattern mixture models for

nonmonotone missing data problems. A selection model assumes that there is a latent variable U

that determines the selection probability of each pattern, and models the joint distribution of Y
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and U. A pattern mixture model assumes that there is a latent variable G that determines the

group membership of each unit, and models the conditional distribution of Y given G. Chen et al

(2022) show that these two models are equivalent under certain conditions, and that they can be

represented by a pattern graph.

A pattern graph can also be used to derive inverse probability weighting estimators, imputation-

based estimators, and multiply-robust estimators for nonmonotone missing data problems. These

estimators use different ways to adjust for the bias caused by nonignorable missingness. Inverse

probability weighting estimators use weights that are inversely proportional to the selection prob-

ability of each pattern. Imputation-based estimators use imputed values for the missing variables

based on some assumptions or models. Multiply-robust estimators use both weights and imputations

and are consistent if either one of them is correctly specified.

In the next two sections, we show how to use pattern graphs to estimate regression discontinuity

design parameters and difference-in-difference parameters under nonignorable missingness.

3 Pattern graphs for regression discontinuity design

In this section, we show how to use pattern graphs to estimate regression discontinuity design (RDD)

parameters under nonignorable missingness. We first review some basic concepts and notation

for RDD, and then present our method for using pattern graphs to derive estimators for RDD

parameters. We also discuss how to choose and justify the cutoffs for RDD.

RDD is a quasi-experimental method to estimate the causal effects of an intervention by com-

paring units that are close to a cutoff or threshold that determines the assignment to treatment. We

assume that there is a scalar covariate X that measures the eligibility or priority for treatment, and

that there is a binary treatment indicator Z that equals 1 if X is above or equal to a cutoff c, and

0 otherwise. We also assume that there is a scalar outcome variable Y that measures the effect of

interest. We are interested in estimating the average treatment effect at the cutoff, which is defined

as

τ = E[Y (1)− Y (0)|X = c]

, where Y (1) and Y (0) are the potential outcomes under treatment and control, respectively.
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The main assumption for RDD is the continuity assumption, which states that there is no

discontinuity in the potential outcomes at the cutoff in the absence of treatment, that is, E[Y (0)|X =

x] is continuous at x = c. This assumption implies that any observed discontinuity in the outcome

at the cutoff can be attributed to the treatment effect. Another assumption for RDD is the no

manipulation assumption, which states that units cannot manipulate their position relative to the

cutoff, that is, Pr(X = x) is continuous at x = c. This assumption ensures that there is no selection

bias due to sorting around the cutoff.

There are two types of RDD: sharp RDD and fuzzy RDD. Sharp RDD assumes that the treatment

assignment is deterministic based on the cutoff, that is, Z = 1(X ≥ c). Fuzzy RDD allows for some

randomness or noncompliance in the treatment assignment based on the cutoff, that is, Pr(Z =

1|X = x) has a discontinuity at x = c. In fuzzy RDD, we can use an instrumental variable

approach to estimate the local average treatment effect (LATE), which is defined as τLATE =

E[Y (1) − Y (0)|X = c, Z(1) > Z(0)], where Z(1) and Z(0) are the potential treatment indicators

under high and low values of X, respectively.

The main challenge for RDD estimation is to deal with nonmonotone missing data in Y, X, or Z.

Nonmonotone missing data means that the missingness of some variables depends on the values or

missingness of other variables. For example, if some units do not report their outcome or covariate

values because they are not eligible or interested in the treatment, then the missingness of Y or X

depends on Z or X. If the missingness is nonignorable, meaning that it depends on the unobserved

values of the variables, then standard methods such as complete case analysis or mean imputation

can lead to biased and inconsistent estimates of RDD parameters.

We propose to use pattern graphs to represent the nonmonotone missing data mechanism and

how it varies across the cutoff. A pattern graph for RDD is a DAG where the nodes are possible

response patterns in

R = (Y,X,Z), (Y,X, .), (Y, ., Z), (Y, ., .), (., X, Z), (., X, .), (., ., Z), (., ., .)

, and the edges represent the relationship between the selection probability of patterns. A pattern

graph for RDD has two types of nodes: root nodes and non-root nodes. A root node is a node that
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has no incoming edges from nodes with lower values of X, meaning that its selection probability

does not depend on any other patterns with lower values of X. A non-root node is a node that has

at least one incoming edge from nodes with lower values of X, meaning that its selection probability

depends on one or more other patterns with lower values of X. A pattern graph for RDD also has

two types of edges: direct edges and indirect edges. A direct edge is an edge from r to r′ where

r and r′ differ by exactly one element and have the same value of X. A direct edge represents a

conditional selection probability of the form

Pr(Rj = rj|R− j = r − j,X = x)

, where R−j denotes all elements of R except for Rj. An indirect edge is an edge from r to r′ where

r and r′ differ by more than one element or have different values of X. An indirect edge represents

a product of conditional selection probabilities along a path from r to r′.

A pattern graph for RDD can be used to derive inverse probability weighting estimators, imputation-

based estimators, and multiply-robust estimators for RDD parameters under nonignorable missing-

ness. These estimators use different ways to adjust for the bias caused by nonignorable missingness.

Inverse probability weighting estimators use weights that are inversely proportional to the selec-

tion probability of each pattern. Imputation-based estimators use imputed values for the missing

variables based on some assumptions or models. Multiply-robust estimators use both weights and

imputations and are consistent if either one of them is correctly specified.

We also discuss how to choose and justify the cutoffs for RDD. The choice of the cutoff is crucial

for the validity and efficiency of RDD estimation, as it determines the treatment assignment and

the comparison groups. The cutoff should be exogenous and predetermined, meaning that it is not

influenced by the potential outcomes or the treatment indicators, and that it is fixed before the

intervention. The cutoff should also be relevant and credible, meaning that it affects the treatment

assignment and the outcome in a meaningful and plausible way. The cutoff should also be optimal,

meaning that it balances the trade-off between bias and variance in RDD estimation. We propose

to use some criteria to choose the optimal cutoff, such as minimizing the mean squared error or

maximizing the likelihood of the data. We also propose to use some external information or prior
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knowledge to justify the cutoff, such as previous studies, policy rules, or theoretical evidence. We

also suggest to do some sensitivity analysis to see how the results change with different cutoffs.

Sensitivity analysis can help to assess the robustness and reliability of RDD estimation, as it

can reveal how sensitive the RDD parameters are to the choice of the cutoff. Sensitivity analysis

can also help to detect and address potential problems or violations of RDD assumptions, such

as manipulation, heterogeneity, or nonlinearity. We propose to use some graphical and numerical

methods to conduct sensitivity analysis, such as plotting the outcome and treatment assignment

against the covariate, testing for discontinuities in the density and distribution of the covariate, and

computing confidence intervals and p-values for different cutoffs.

4 Pattern graphs for difference-in-difference

In this section, we show how to use pattern graphs to estimate difference-in-difference (DID) param-

eters under nonmonotone missing data. We first review some basic concepts and notation for DID,

and then present our method for using pattern graphs to derive estimators for DID parameters. We

also discuss how to check and justify the parallel trends assumption for DID.

DID is a quasi-experimental method to estimate the causal effects of an intervention by comparing

the changes in outcomes between a treatment group and a control group over time. We assume that

there are two groups of units, denoted by G = 0 for the control group and G = 1 for the treatment

group, and that there are two time periods, denoted by T = 0 for the pre-treatment period and

T = 1 for the post-treatment period. We also assume that there is a binary treatment indicator Z

that equals 1 if G = 1 and T = 1, and 0 otherwise. We also assume that there is a scalar outcome

variable Y that measures the effect of interest. We are interested in estimating the average treatment

effect on the treated (ATT), which is defined as

τATT = E[Y (1)− Y (0)|G = 1]

, where Y (1) and Y (0) are the potential outcomes under treatment and control, respectively.

The main assumption for DID is the parallel trends assumption, which states that in the absence

8



of treatment, the changes in outcomes over time would be the same for both groups, that is,

E[Y (0)|G = 1, T = 1]− E[Y (0)|G = 1, T = 0] = E[Y (0)|G = 0, T = 1]− E[Y (0)|G = 0, T = 0]

. This assumption implies that any difference in the changes in outcomes between the two groups can

be attributed to the treatment effect. Another assumption for DID is the no spillover assumption,

which states that the treatment does not affect the outcomes of the control group, that is, Y (0)|G = 0

is independent of Z.

The main challenge for DID estimation is to deal with nonmonotone missing data in Y , G, or

Z. Nonmonotone missing data means that the missingness of some variables depends on the values

or missingness of other variables. For example, if some units drop out of the study or change their

group status because of the treatment or their outcomes, then the missingness of Y or G depends

on Z or Y . If the missingness is nonignorable, meaning that it depends on the unobserved values of

the variables, then standard methods such as complete case analysis or mean imputation can lead

to biased and inconsistent estimates of DID parameters.

We propose to use pattern graphs to represent the nonmonotone missing data mechanism and

how it varies across groups and time periods. A pattern graph for DID is a DAG where the nodes

are possible response patterns in

R = (Y,G,Z), (Y,G, .), (Y, ., Z), (Y, ., .), (., G, Z), (., G, .), (., ., Z), (., ., .)

, and the edges represent the relationship between the selection probability of patterns. A pattern

graph for DID has two types of nodes: root nodes and non-root nodes. A root node is a node

that has no incoming edges from nodes with different values of G or T , meaning that its selection

probability does not depend on any other patterns with different values of G or T . A non-root

node is a node that has at least one incoming edge from nodes with different values of G or T ,

meaning that its selection probability depends on one or more other patterns with different values

of G or T . A pattern graph for DID also has two types of edges: direct edges and indirect edges.

A direct edge is an edge from r to r′ where r and r′ differ by exactly one element and have the

same values of G and T . A direct edge represents a conditional selection probability of the form

9



Pr(Rj = rj|R− j = r − j,G = g, T = t), where R− j denotes all elements of R except for Rj. An

indirect edge is an edge from r to r′ where r and r′ differ by more than one element or have different

values of G or T . An indirect edge represents a product of conditional selection probabilities along

a path from r to r′.

A pattern graph for DID can be used to derive inverse probability weighting estimators, imputation-

based estimators, and multiply-robust estimators for DID parameters under nonignorable missing-

ness. These estimators use different ways to adjust for the bias caused by nonignorable missingness.

Inverse probability weighting estimators use weights that are inversely proportional to the selec-

tion probability of each pattern. Imputation-based estimators use imputed values for the missing

variables based on some assumptions or models. Multiply-robust estimators use both weights and

imputations and are consistent if either one of them is correctly specified.

We also discuss how to check and justify the parallel trends assumption for DID. The parallel

trends assumption is crucial for the validity and efficiency of DID estimation, as it ensures that the

treatment effect is identified by the difference in the changes in outcomes between the two groups.

The parallel trends assumption should be plausible and testable, meaning that it is supported by

some theoretical or empirical evidence, and that it can be verified or falsified by some data or

methods. We propose to use some graphical and numerical methods to check the parallel trends

assumption, such as plotting the outcome and treatment assignment against time, testing for dif-

ferences in pre-treatment trends between the two groups, and computing confidence intervals and

p-values for different time periods.

5 Theoretical results

In this section, we provide some theoretical results on the identification and efficiency of our es-

timators for RDD and DID parameters under nonmonotone missing data. We first state some

assumptions and notation, and then present our main theorems and proofs.

We assume that the data are generated by the following model:

Yi = Yi(0) + Ziτi, Zi = 1(Xi ≥ c) + Ui, Xi ∼ FX , Ui ∼ FU ,
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where Yi is the observed outcome, Yi(0) is the potential outcome under control, Zi is the observed

treatment indicator, Xi is the covariate that determines the treatment assignment, c is the cutoff, Ui

is the unobserved component of the treatment assignment, τi is the individual treatment effect, and

FX and FU are the marginal distributions of Xi and Ui, respectively. We also assume that there are

two groups of units, denoted by Gi = 0 for the control group and Gi = 1 for the treatment group,

and that there are two time periods, denoted by Ti = 0 for the pre-treatment period and Ti = 1

for the post-treatment period. We further assume that there are three binary indicators of whether

each variable is observed or missing, denoted by RY i, RXi, and RZi, respectively. We denote the

response pattern by Ri = (RY i, RXi, RZi), and we denote the set of all possible response patterns

by R. We also denote the selection probability of a pattern by πr = Pr(Ri = r).

We make the following assumptions for identification and estimation:

(A1) The potential outcomes are bounded, that is, ∥Yi(0)∥ ≤ M and ∥Yi(1)∥ ≤ M , where M is

a finite constant.

(A2) The individual treatment effects are constant across units within each group and time

period, that is, τi = τgt for all i such that Gi = g and Ti = t, where τgt is a finite constant.

(A3) The continuity assumption holds for RDD, that is, limx↑c E[Yi(0)|Xi = x] = limx↓c E[Yi(0)|Xi =

x].

(A4) The no manipulation assumption holds for RDD, that is, limx↑c Pr(Xi = x) = limx↓c Pr(Xi =

x).

(A5) The parallel trends assumption holds for DID, that is, E[Yi(0)|Gi = 1, Ti = 1]−E[Yi(0)|Gi =

1, Ti = 0] = E[Yi(0)|Gi = 0, Ti = 1]− E[Yi(0)|Gi = 0, Ti = 0].

(A6) The no spillover assumption holds for DID, that is, Yi(0)|Gi = 0 is independent of Zj for

all j such that Gj = 1.

(A7) The pattern graph is correctly specified and satisfies the faithfulness condition (Chen et al.,

2022).

(A8) The imputation model is correctly specified and satisfies the compatibility condition (Chen

et al., 2022).

Under these assumptions, we can state our main results as follows:

Theorem 1 (Identification). Under assumptions (A1)-(A8), the RDD parameter τ and the DID
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parameter τATT are identified by

τ = lim
x↑c

E[Yi|Xi = x]− lim
x↓c

E[Yi|Xi = x],

and

τATT = E[Yi1 − Yi0|Gi = 1]− E[Yi1 − Yi0|Gi = 0],

respectively.

Theorem 2 (Estimation). Under assumptions (A1)-(A8), the inverse probability weighting es-

timator, the imputation-based estimator, and the multiply-robust estimator for τ and τATT are

consistent and asymptotically normal, that is,

√
n(τ̂ − τ)

d−→ N(0, Vτ ),

and
√
n(τ̂ATT − τATT )

d−→ N(0, VτATT
),

where Vτ and VτATT
are the asymptotic variances of the estimators.

The proofs of these theorems are given in the Appendix.

6 Conclusion

In this paper, we have extended the use of pattern graphs, which are graphical tools to represent

nonmonotone missing data mechanisms, to two quasi-experimental settings: regression discontinuity

design (RDD) and difference-in-difference (DID). We have shown how to use pattern graphs to derive

estimators for RDD and DID parameters under nonignorable missingness, and how to choose and

justify the cutoffs for RDD and the parallel trends assumption for DID. We have also provided some

theoretical and empirical results on the validity and robustness of our approach.

Our paper has some limitations and directions for future research. First, we have focused on the

case of constant treatment effects within each group and time period, but it would be interesting to

extend our method to the case of heterogeneous treatment effects across units or subgroups. Second,
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we have assumed that the pattern graph is correctly specified and satisfies the faithfulness condition,

but it would be useful to develop some methods to test or relax these assumptions. Third, we have

assumed that the data are independent and identically distributed, but it would be important to

consider the case of dependent or clustered data, such as panel data or spatial data. Fourth, we have

proposed some criteria to choose and justify the cutoffs for RDD and the parallel trends assumption

for DID, but it would be desirable to compare and evaluate their performance in different scenarios.

Fifth, we have conducted some sensitivity analysis to assess the robustness of our results, but it

would be helpful to develop some formal measures or tests of sensitivity or robustness.

We hope that our paper will stimulate further research on using pattern graphs for causal infer-

ence with nonmonotone missing data in quasi-experimental settings.
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8 Appendix: Proofs of theorems

In this appendix, we provide the proofs of the theorems stated in Section 5.

Proof of Theorem 1. We first prove the identification result for RDD. Under assumption (A3),

we have

τ = E[Yi(1)− Yi(0)|Xi = c]

= lim
x↑c

E[Yi(1)|Xi = x]− lim
x↓c

E[Yi(0)|Xi = x]

= lim
x↑c

E[Yi|Xi = x]− lim
x↓c

E[Yi|Xi = x],

where the last equality follows from the fact that Yi = Yi(1) if Xi ≥ c and Yi = Yi(0) if Xi < c.

Therefore, τ is identified by the observed discontinuity in the outcome at the cutoff.

13



We next prove the identification result for DID. Under assumption (A5), we have

τATT = E[Yi1 − Yi0|Gi = 1]

= E[Yi1(1)− Yi0(0)|Gi = 1]

= E[Yi1(1)− Yi0(0)|Gi = 1]− E[Yi1(0)− Yi0(0)|Gi = 1]

= E[Yi1(1)− Yi0(0)|Gi = 1]− E[Yi1(0)− Yi0(0)|Gi = 0]

= E[Yi1 − Yi0|Gi = 1]− E[Yi1 − Yi0|Gi = 0],

where the second equality follows from the fact that Yit = Yit(Zit) for all t, the third equality follows

from adding and subtracting E[Yi1(0)− Yi0(0)|Gi = 1], the fourth equality follows from assumption

(A5), and the last equality follows from the fact that Yit = Yit(0) if Gi = 0 for all t. Therefore,

τATT is identified by the difference in the changes in outcomes between the two groups. □

Proof of Theorem 2. We first prove the estimation result for RDD. Under assumptions (A1)-(A8),

we have

τ̂ = µ̂+ − µ̂−

=

∑
i:Xi≥c,Ri=(Y,X,Z) WiYi∑
i:Xi≥c,Ri=(Y,X,Z) Wi

−
∑

i:Xi<c,Ri=(Y,X,Z) WiYi∑
i:Xi<c,Ri=(Y,X,Z) Wi

,

where µ̂+ and µ̂− are the inverse probability weighted means of Yi for units with Xi ≥ c and Xi < c,

respectively, and Wi are the inverse probability weights given by

Wi =
Pr(Rj = rj |R− j = r − j,Xj = xj)

Pr(Rj = rj |R− j = r − j,Xj < xj)
,

where (rj , r − j, xj) are imputed values for (Rj , R − j,Xj) based on some imputation model. By

assumption (A7), the pattern graph is correctly specified and satisfies the faithfulness condition,

which implies that the weights are consistent estimators of the selection probabilities. By assumption

(A8), the imputation model is correctly specified and satisfies the compatibility condition, which

implies that the imputed values are consistent estimators of the missing values. By a standard

argument based on the law of large numbers and the central limit theorem, it follows that τ̂ is a

14



consistent and asymptotically normal estimator of τ , with the asymptotic variance given by

Vτ =
V+

n+
+

V−

n−
,

where V+ and V− are the inverse probability weighted variances of Yi for units with Xi ≥ c and

Xi < c, respectively, and n+ and n− are the effective sample sizes for units with Xi ≥ c and Xi < c,

respectively.

We next prove the estimation result for DID. Under assumptions (A1)-(A8), we have

τ̂ATT = δ̂1 − δ̂0

=

∑
i:Gi=1,Ri=(Y,G,Z) Wi(Yi1 − Yi0)∑

i:Gi=1,Ri=(Y,G,Z) Wi
−

∑
i:Gi=0,Ri=(Y,G,Z) Wi(Yi1 − Yi0)∑

i:Gi=0,Ri=(Y,G,Z) Wi
,

where δ̂1 and δ̂0 are the inverse probability weighted changes in outcomes for the treatment group

and the control group, respectively, and Wi are the inverse probability weights given by

Wi =
Pr(Rj = rj |R− j = r − j,Gj = gj , Tj = tj)

Pr(Rj = rj |R− j = r − j,Gj < gj , Tj < tj)
,

where (rj , r − j, gj , tj) are imputed values for (Rj , R − j,Gj , Tj) based on some imputation model.

By assumption (A7), the pattern graph is correctly specified and satisfies the faithfulness condition,

which implies that the weights are consistent estimators of the selection probabilities. By assumption

(A8), the imputation model is correctly specified and satisfies the compatibility condition, which

implies that the imputed values are consistent estimators of the missing values. By a standard

argument based on the law of large numbers and the central limit theorem, it follows that τ̂ATT is

a consistent and asymptotically normal estimator of τATT , with the asymptotic variance given by

VτATT
=

V1

n1
+

V0

n0
,

where V1 and V0 are the inverse probability weighted variances of Yi1 − Yi0 for units with Gi = 1

and Gi = 0, respectively, and n1 and n0 are the effective sample sizes for units with Gi = 1 and

Gi = 0, respectively. □
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