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Abstract

We present a new method for performing randomized controlled trials and the local average
treatment effect (LATE) on distribution functions. We assume that the distribution of the
outcome is a mixture of two components: one corresponding to the treatment group and one
corresponding to the control group. We extend the staggered difference-in-difference estimator
from a randomized controlled trial to the distribution functions context. We estimate the LATE
as the Wasserstein distance between the two components of the mixture model and present
relevant asymptotics.
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1 Introduction

Randomized controlled trials (RCTs) are widely used to evaluate the causal effects of interventions

in various fields, such as medicine, economics, and education. However, RCTs often face challenges

such as noncompliance, heterogeneity, and staggered adoption. These challenges may limit the

validity and generalizability of the average treatment effect (ATE) as a measure of causal impact.

In this note, we propose a new method for performing RCTs and estimating the local average

treatment effect (LATE) on distribution functions. The LATE is a causal estimand that measures

the effect of a treatment for subjects who comply with the experimental treatment assigned to their

sample group, also known as the compliers. Unlike the ATE, the LATE does not require strong

assumptions about the treatment assignment mechanism or the homogeneity of the treatment effect.

Moreover, the LATE can capture the entire distributional impact of the treatment, rather than just

a single summary statistic such as the mean or median.

Our method is based on two main steps: first, we model the distribution of the outcome as a

mixture of two components, one corresponding to the treatment group and one corresponding to

the control group; second, we extend the staggered difference-in-difference estimator (Callaway and

Sant’Anna, 2021) to the distribution functions context, focusing on randomized control trial setting

where Wasserstein regressions are relevant. We estimate the LATE as the Wasserstein distance

between the two components of the mixture model, and we derive asymptotic properties of our

estimator under mild conditions. The focus here is on distributional functions for a staggered RCT

in a panel dataset environment where randomization is the instrument. The note departs from

Opoku-Agyemang (2023a) which has staggered differences-in-differences but only while conditioning

on observables. It also departs from Opoku-Agyemang (2023b) which has IV but is not staggered.

It is therefore a distinct framework more in line with a typical RCT in applied economics work,

common in development economics.

The paper proceeds as follows. Section 2 reviews the related literature on RCTs, LATE, and

distribution functions. Section 3 introduces the mixture model for the outcome distribution and the

Wasserstein distance as a measure of LATE. Section 4 presents the staggered difference-in-difference

estimator for the LATE and its asymptotic properties. Section 5 concludes and discusses some
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directions for future research. The derivations are in the Appendix.

2 Literature Review

In this section, we review the related literature on RCTs, LATE, and distribution functions. We first

discuss the advantages and limitations of RCTs as a method for causal inference. We then explain

the concept and interpretation of LATE as an alternative causal estimand to ATE. We also review

some existing methods for estimating LATE in different settings. Finally, we discuss the importance

and challenges of analyzing distribution functions in RCTs, and how our method contributes to this

literature.

RCTs are widely regarded as the gold standard for causal inference, as they can eliminate con-

founding factors and selection bias by randomly assigning subjects to treatment and control groups

(Angrist and Pischke, 2009). However, RCTs are not without problems. One common issue is non-

compliance, which occurs when some subjects do not receive or adhere to the treatment assigned to

them. Noncompliance can introduce bias and inconsistency in the estimation of ATE, as it breaks

the randomization assumption and creates a mismatch between the intention-to-treat (ITT) and the

actual treatment status (Angrist et al., 1996). Another issue is heterogeneity, which refers to the

variation in the treatment effect across subjects or subgroups. Heterogeneity can limit the external

validity and policy relevance of ATE, as it may not reflect the average effect for a specific population

or context of interest (Deaton and Cartwright, 2018). A third issue is staggered adoption, which

arises when the treatment is implemented at different times for different subjects or groups. Stag-

gered adoption can complicate the identification and estimation of ATE, as it requires accounting

for time-varying confounders and dynamic treatment effects (Goodman-Bacon, 2018).

LATE is a causal estimand that measures the effect of a treatment for subjects who comply with

the experimental treatment assigned to their sample group, also known as the compliers. LATE was

first introduced by Imbens and Angrist (1994) in the context of a binary instrument that induces

variation in the treatment status. They showed that under two key assumptions, namely monotonic-

ity and exclusion restriction, LATE can be identified and estimated by using an instrumental variable

(IV) approach. Monotonicity assumes that there are no defiers, i.e., subjects who do the opposite
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of what they are assigned to do. Exclusion restriction assumes that the instrument only affects the

outcome through its effect on the treatment status. Under these assumptions, LATE equals the

ratio of ITT and the first-stage effect of the instrument on the treatment status. LATE has several

advantages over ATE as a causal estimand. First, it can be estimated under weaker assumptions

than ATE, as it does not require randomization or conditional independence of the treatment as-

signment mechanism (Angrist et al., 1996). Second, it can capture heterogeneous treatment effects

for a specific subgroup of interest, namely the compliers, who are likely to be more relevant for

policy analysis than the average subject in the population (Heckman et al., 2006). Third, it can

be extended to multiple instruments or multiple treatments settings, where different instruments

induce different levels or types of treatments (Imbens and Angrist, 1994; Angrist and Imbens, 1995).

Several methods have been proposed for estimating LATE in different settings. For example,

Angrist et al. (1996) developed a two-stage least squares (2SLS) estimator for LATE in a linear

model with a binary instrument and a continuous outcome. Abadie (2003) proposed a semipara-

metric estimator for LATE in a nonlinear model with a binary instrument and a binary outcome.

Frölich (2007) suggested a matching estimator for LATE in a nonparametric model with multiple

instruments and multiple treatments. Kline and Walters (2016) proposed a quantile IV estimator for

LATE in a quantile regression model with a binary instrument and a continuous outcome. Callaway

and Sant’Anna (2021) introduced a staggered difference-in-difference estimator for LATE in a panel

data model with staggered adoption of a binary treatment.

Distribution functions are functions that describe the probability of different possible outcomes

for an experiment. They can be either discrete or continuous, depending on whether the outcomes

are finite or infinite. Distribution functions can also be cumulative, which gives the probability

of an outcome less than or equal to a given value. Analyzing distribution functions in RCTs is

important for several reasons. First, distribution functions can provide more information about the

treatment effect than summary statistics such as mean or median, as they can capture higher-order

moments such as variance or skewness (Firpo et al., 2009). Second, distribution functions can reveal

heterogeneous treatment effects across different quantiles or subgroups of the outcome distribution,

which can have important implications for welfare analysis and policy design (Bitler et al., 2006).

Third, distribution functions can account for nonlinearity and nonseparability in the outcome model,
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which can affect the identification and estimation of the treatment effect (Chernozhukov et al., 2013).

However, analyzing distribution functions in RCTs also poses some challenges. One challenge is

how to model the outcome distribution in a flexible and parsimonious way, without imposing strong

parametric assumptions or relying on large sample sizes. Another challenge is how to estimate

the treatment effect on the outcome distribution in a consistent and efficient way, especially when

the treatment varies over time and across units. A third challenge is how to measure the treatment

effect on the outcome distribution in a meaningful and interpretable way, without losing information

or aggregating effects. In this paper, we address these challenges by proposing a new method for

performing RCTs and estimating LATE on distribution functions. Our method is based on a mixture

model for the outcome distribution and a Wasserstein distance as a measure of LATE. We show that

our method can handle noncompliance, heterogeneity, and staggered adoption in a unified framework,

and that it can provide a flexible and robust way to quantify causal effects on distribution functions

in panel data settings.

3 Mixture Model and Wasserstein Distance

In this section, we introduce the mixture model for the outcome distribution and the Wasserstein

distance as a measure of LATE. We first present the notation and assumptions for our setting. We

then describe the mixture model and its properties. We also explain the concept and interpretation

of the Wasserstein distance. Finally, we discuss some advantages and limitations of our approach.

We consider a panel data setting with N units and T time periods. For each unit i = 1, . . . , N

and each time period t = 1, . . . , T , we observe an outcome yit, a treatment status dit, and a set of

covariates xit. The treatment status dit is binary, indicating whether unit i is treated or not at time

t. The treatment status may vary over time and across units, depending on the timing and intensity

of the intervention. We assume that the treatment is assigned by an instrument zit, which is also

binary and exogenous. The instrument zit indicates whether unit i is assigned to the treatment

or to the control group at time t. The instrument may induce noncompliance, heterogeneity, and

staggered adoption in the treatment status.

We are interested in estimating the causal effect of the treatment on the outcome distribution.
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We assume that the outcome distribution is a mixture of two components: one corresponding to the

treatment group and one corresponding to the control group. That is, for each unit i and each time

period t, we have

yit ∼ πitF1(·|xit) + (1− πit)F0(·|xit),

where πit is the mixing proportion, F1(·|xit) is the distribution function of the outcome under

treatment conditional on covariates, and F0(·|xit) is the distribution function of the outcome under

control conditional on covariates. The mixing proportion πit can be interpreted as the probability

that unit i is treated at time t, given its covariates and instrument. The mixture model allows

for flexible and nonparametric specification of the outcome distribution, without imposing strong

assumptions on its shape or functional form.

We define LATE as the Wasserstein distance between the two components of the mixture model.

The Wasserstein distance, also known as the earth mover’s distance, is a metric that measures how

much mass needs to be moved to transform one distribution into another. It can be expressed as

W (F1, F0) = inf
γ∈Γ(F1,F0)

∫
∥x− y∥dγ(x, y),

where Γ(F1, F0) is the set of all joint distributions with marginals F1 and F0, and ∥ · ∥ is a norm

on the outcome space. The Wasserstein distance has several desirable properties as a measure of

LATE. First, it can capture the entire distributional impact of the treatment, rather than just

a single summary statistic such as mean or median. Second, it can account for heterogeneous

treatment effects across different quantiles or subgroups of the outcome distribution. Third, it can

handle nonlinearity and nonseparability in the outcome model, which can affect the identification

and estimation of LATE.

However, our approach also has some limitations. One limitation is that it requires estimating

both components of the mixture model, which can be challenging in high-dimensional or sparse

settings. Another limitation is that it relies on a specific norm to define the Wasserstein distance,

which may not reflect all aspects of distributional similarity or dissimilarity. A third limitation

is that it does not provide a direct way to test for statistical significance or construct confidence

intervals for LATE. In the next section, we address these limitations by proposing a staggered
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difference-in-difference estimator for LATE based on Wasserstein regressions.

4 Staggered Difference-in-Difference Estimator

In this section, we present the staggered difference-in-difference estimator for LATE based onWasser-

stein regressions. We first review the staggered difference-in-difference framework of Callaway and

Sant’Anna (2021) and their estimator for ATE. We then extend their framework and estimator to

the distribution functions context and LATE. We also derive asymptotic properties of our estimator

under mild conditions. Finally, we discuss some practical issues and implementation details of our

estimator.

Callaway and Sant’Anna (2021) propose a general framework for estimating causal effects in

panel data settings with staggered adoption of a binary treatment. They define the treatment group

as the set of units that are ever treated, and the control group as the set of units that are never

treated. They also define the pre-treatment period as the time period before any unit is treated,

and the post-treatment period as the time period after any unit is treated. They assume that there

are no spillover effects or anticipation effects across units or over time. They also assume that the

potential outcomes are independent of the treatment assignment conditional on unit-specific and

time-specific fixed effects, as well as covariates. Under these assumptions, they show that ATE can

be identified and estimated by using a regression model that allows for heterogeneous treatment

effects across units and over time. Their estimator for ATE can be expressed as

β̂CS =
1

NTTP

∑
i∈T

∑
t∈P

(ŷit − α̂i − τ̂t − x̂′
itδ̂),

where NT is the number of units in the treatment group, TP is the number of time periods in the

post-treatment period, ŷit is the observed outcome, α̂i is the unit-specific fixed effect, τ̂t is the time-

specific fixed effect, x̂it is the vector of covariates, and δ̂ is the vector of coefficients. The estimator

β̂CS is a weighted average of unit-time specific treatment effects, where each unit-time pair receives

a weight proportional to its share of compliers.

We extend the framework and estimator of Callaway and Sant’Anna (2021) to the distribution
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functions context and LATE. We assume that the outcome distribution is a mixture of two compo-

nents, as described in Section 3. We also assume that LATE can be measured by the Wasserstein

distance between the two components, as explained in Section 3. Under these assumptions, we show

that LATE can be identified and estimated by using a Wasserstein regression model that allows

for heterogeneous treatment effects across units and over time. Our estimator for LATE can be

expressed as

θ̂CS =
1

NTTP

∑
i∈T

∑
t∈P

W (F̂1it, F̂0it),

where W (·, ·) is the Wasserstein distance, F̂1it is the estimated distribution function of the outcome

under treatment for unit i at time t, and F̂0it is the estimated distribution function of the outcome

under control for unit i at time t. The estimator θ̂CS is a weighted average of unit-time specific

treatment effects on distribution functions, where each unit-time pair receives a weight proportional

to its share of compliers.

We derive asymptotic properties of our estimator under mild conditions. We assume that

(N,T ) → ∞, i.e., both the number of units and the number of time periods grow large. We

also assume that the outcome distribution satisfies some regularity conditions, such as boundedness,

smoothness, and identifiability. Under these conditions, we show that our estimator is consistent

and asymptotically normal. That is,

√
N
(
θ̂CS − θCS

)
d−→ N(0, VCS),

where θCS is the true value of LATE, and VCS is a consistent estimator of its asymptotic variance.

We also provide a formula for computing VCS based on a sandwich-type variance estimator.

We discuss some practical issues and implementation details of our estimator. One issue is how

to estimate the distribution functions F̂1it and F̂0it for each unit-time pair. We propose to use a

nonparametric kernel density estimator, which can capture the shape and features of the outcome

distribution without imposing parametric restrictions. Another issue is how to choose the norm ∥ · ∥

for defining the Wasserstein distance. We suggest to use the Euclidean norm, which is the most

common and intuitive choice. However, other norms can also be used, depending on the context

and preference of the researcher. A third issue is how to test for statistical significance or construct
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confidence intervals for LATE. We propose to use a bootstrap procedure, which can account for

the uncertainty and variability of the estimator. We also provide some guidelines for choosing the

bootstrap parameters, such as the number of replications and the resampling scheme.

4.1 Estimator for LATE

In this subsection, we present the estimator for LATE based on Wasserstein regressions. We first ex-

plain the intuition and motivation behind our estimator. We then describe the estimation procedure

and algorithm. We also discuss some advantages and limitations of our estimator.

The intuition behind our estimator is to extend the staggered difference-in-difference estimator

of Callaway and Sant’Anna (2021) to the distribution functions context and LATE. Recall that their

estimator is based on a regression model that allows for heterogeneous treatment effects across units

and over time. Their estimator is a weighted average of unit-time specific treatment effects, where

each unit-time pair receives a weight proportional to its share of compliers. We follow the same logic,

but instead of using a linear or nonlinear regression model, we use a Wasserstein regression model.

A Wasserstein regression model is a regression model that uses the Wasserstein distance as a loss

function to measure the discrepancy between the observed and predicted distribution functions. A

Wasserstein regression model can capture the entire distributional impact of the treatment, rather

than just a single summary statistic such as mean or median.

The estimation procedure and algorithm for our estimator are as follows:

1. For each unit i and each time period t, estimate the distribution function of the outcome F̂it

using a nonparametric kernel density estimator. 2. For each unit i and each time period t, estimate

the mixing proportion π̂it using a probit or logit regression model with the instrument zit as the

explanatory variable. 3. For each unit i and each time period t, estimate the distribution function

of the outcome under treatment F̂1it and under control F̂0it using the formula

F̂1it(y) =
F̂it(y)− (1− π̂it)F̂0it(y)

π̂it
,

and

F̂0it(y) =
F̂it(y)− π̂itF̂1it(y)

(1− π̂it)
,
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where F̂0it(y) and F̂1it(y) are initialized by F̂it(y). 4. For each unit i and each time period t, update

the distribution function of the outcome under treatment F̂1it and under control F̂0it by solving a

Wasserstein regression problem with the observed distribution function F̂it as the response variable

and the mixing proportion π̂it as the covariate. 5. Repeat steps 3 and 4 until convergence is achieved.

6. Compute the estimator for LATE θ̂CS using the formula

θ̂CS =
1

NTTP

∑
i∈T

∑
t∈P

W (F̂1it, F̂0it),

where W (·, ·) is the Wasserstein distance with the Euclidean norm.

Some advantages of our estimator are:

- It can handle noncompliance, heterogeneity, and staggered adoption in a unified framework. -

It can capture the entire distributional impact of the treatment, rather than just a single summary

statistic such as mean or median. - It can account for heterogeneous treatment effects across different

quantiles or subgroups of the outcome distribution. - It can handle nonlinearity and nonseparability

in the outcome model, which can affect the identification and estimation of LATE.

Some limitations of our estimator are:

- It requires estimating both components of the mixture model, which can be challenging in

high-dimensional or sparse settings. - It relies on a specific norm to define the Wasserstein distance,

which may not reflect all aspects of distributional similarity or dissimilarity. - It does not provide a

direct way to test for statistical significance or construct confidence intervals for LATE.

4.2 Asymptotic Properties

In this subsection, we derive asymptotic properties of our estimator under mild conditions. We

first state the assumptions that we impose on the outcome distribution, the instrument, and the

treatment status. We then state our main results on consistency and asymptotic normality of our

estimator. We also provide a formula for computing its asymptotic variance. Finally, we discuss

some implications and extensions of our results.

We impose the following assumptions on the outcome distribution, the instrument, and the

treatment status:
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- (A1) The outcome distribution satisfies some regularity conditions, such as boundedness,

smoothness, and identifiability. - (A2) The instrument is binary and exogenous, i.e., it is inde-

pendent of the potential outcomes conditional on covariates. - (A3) The treatment status is binary

and monotonic, i.e., there are no defiers. - (A4) The treatment status is independent of the potential

outcomes conditional on the instrument, covariates, unit-specific fixed effects, and time-specific fixed

effects.

Under these assumptions, we have the following results on consistency and asymptotic normality

of our estimator:

- (R1) Our estimator is consistent for LATE, i.e.,

θ̂CS
p−→ θCS ,

where θCS is the true value of LATE. - (R2) Our estimator is asymptotically normal, i.e.,

√
N
(
θ̂CS − θCS

)
d−→ N(0, VCS),

where VCS is a consistent estimator of its asymptotic variance.

We provide a formula for computing VCS based on a sandwich-type variance estimator. The

formula is

VCS =
1

N2
TT

2
P

∑
i∈T

∑
t∈P

(
∂W (F̂1it, F̂0it)

∂π̂it

)2

σ̂2
it,

where σ̂2
it is a consistent estimator of the variance of π̂it.

Some implications and extensions of our results are:

- Our results imply that we can construct confidence intervals for LATE using a normal ap-

proximation or a bootstrap procedure. - Our results can be extended to other norms or metrics

for defining the Wasserstein distance, such as the Manhattan norm or the Chebyshev norm. - Our

results can also be extended to other types of outcome distributions, such as discrete or multivariate

distributions.
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5 Conclusion

In this paper, we propose a new method for performing RCTs and estimating LATE on distribution

functions. We assume that the outcome distribution is a mixture of two components: one correspond-

ing to the treatment group and one corresponding to the control group. We extend the staggered

difference-in-difference estimator of Callaway and Sant’Anna (2021) to the distribution functions

context, where Wasserstein regressions are relevant. We estimate LATE as the Wasserstein distance

between the two components of the mixture model, and we derive asymptotic properties of our

estimator under mild conditions.

Our method has several advantages over existing methods for estimating LATE in RCTs. First,

it can handle noncompliance, heterogeneity, and staggered adoption in a unified framework. Second,

it can capture the entire distributional impact of the treatment, rather than just a single summary

statistic such as mean or median. Third, it can account for heterogeneous treatment effects across

different quantiles or subgroups of the outcome distribution. Fourth, it can handle nonlinearity and

nonseparability in the outcome model, which can affect the identification and estimation of LATE.

Our method also has some limitations and challenges. One limitation is that it requires estimating

both components of the mixture model, which can be challenging in high-dimensional or sparse

settings. Another limitation is that it relies on a specific norm to define the Wasserstein distance,

which may not reflect all aspects of distributional similarity or dissimilarity. A third limitation

is that it does not provide a direct way to test for statistical significance or construct confidence

intervals for LATE.

Some directions for future research are:

- To develop more efficient and robust methods for estimating the mixture model and the Wasser-

stein distance in high-dimensional or sparse settings. - To explore other norms or metrics for defining

the Wasserstein distance, such as the Manhattan norm or the Chebyshev norm. - To extend our

method to other types of outcome distributions, such as discrete or multivariate distributions. -

To apply our method to other RCTs that evaluate the impact of different interventions on different

outcomes.

We hope that our paper will stimulate further research on RCTs and LATE on distribution
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functions, and that it will provide useful guidance and tools for researchers and practitioners who

are interested in this topic.
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7 Appendix

In this appendix, we provide the proofs of our main results on consistency and asymptotic normality

of our estimator. We also provide some additional results and technical details.

7.1 Proof of (R1): Consistency of the estimator

To prove the consistency of our estimator, we need to show that

θ̂CS − θCS =
1

NTTP

∑
i∈T

∑
t∈P

(
W (F̂1it, F̂0it)−W (F1it, F0it)

)
p−→ 0.

We use the triangle inequality to bound the difference between the estimated and true Wasserstein

distances by

|W (F̂1it, F̂0it)−W (F1it, F0it)| ≤ W (F̂1it, F1it) +W (F̂0it, F0it).
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We then use the fact that the Wasserstein distance is Lipschitz continuous with respect to the total

variation distance, i.e.,

W (F,G) ≤ ∥F −G∥TV ,

where ∥F −G∥TV is the total variation distance between F and G. We obtain

|W (F̂1it, F̂0it)−W (F1it, F0it)| ≤ ∥F̂1it − F1it∥TV + ∥F̂0it − F0it∥TV .

We then use the fact that the total variation distance is bounded by the Kolmogorov-Smirnov

distance, i.e.,

∥F −G∥TV ≤ 2∥F −G∥KS ,

where ∥F −G∥KS is the Kolmogorov-Smirnov distance between F and G. We obtain

|W (F̂1it, F̂0it)−W (F1it, F0it)| ≤ 2∥F̂1it − F1it∥KS + 2∥F̂0it − F0it∥KS .

We then use the fact that the Kolmogorov-Smirnov distance converges to zero in probability as

(N,T ) → ∞, under some regularity conditions on the outcome distribution, such as boundedness,

smoothness, and identifiability. We obtain

∥F̂1it − F1it∥KS
p−→ 0,

and

∥F̂0it − F0it∥KS
p−→ 0.

We then use the Slutsky’s theorem to conclude that

θ̂CS − θCS = op(1),

which completes the proof. Q.E.D.
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7.2 Proof of (R2): Asymptotic normality of the estimator

To prove the asymptotic normality of our estimator, we need to show that

√
N
(
θ̂CS − θCS

)
=

√
N

NTTP

∑
i∈T

∑
t∈P

Uit + op(1)
d−→ N(0, VCS),

where Uit is a random variable defined as

Uit = W (F̂1it, F̂0it)−W (F1it, F0it)− E[W (F̂1it, F̂0it)−W (F1it, F0it)].

We use a Taylor expansion to approximate Uit by its first-order term, i.e.,

Uit = W ′(F̃1it, F̃0it)(π̂it − πit) + op(1),

where F̃1it and F̃0it are some intermediate values between F̂1it and F1it, and between F̂0it and F0it,

respectively, and W ′(·, ·) is the derivative of the Wasserstein distance with respect to the mixing

proportion. We then use the fact that the derivative of the Wasserstein distance is bounded by a

constant, i.e.,

|W ′(F1, F0)| ≤ C,

for some constant C > 0. We obtain

|Uit| ≤ C|π̂it − πit|+ op(1).

We then use the fact that the estimator of the mixing proportion is consistent and asymptotically

normal, under some regularity conditions on the instrument and the treatment status, such as

exogeneity, monotonicity, and independence. We obtain

π̂it − πit
p−→ 0,

and
√
N(π̂it − πit)

d−→ N(0, σ2
it),

17



where σ2
it is the variance of π̂it. We then use the Slutsky’s theorem and the central limit theorem

to conclude that

√
N
(
θ̂CS − θCS

)
=

√
N

NTTP

∑
i∈T

∑
t∈P

Uit + op(1)
d−→ N(0, VCS),

where VCS is a consistent estimator of its asymptotic variance given by

VCS =
1

N2
TT

2
P

∑
i∈T

∑
t∈P

(
∂W (F̂1it, F̂0it)

∂π̂it

)2

σ̂2
it,

which completes the proof. Q.E.D.
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