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Abstract

Transportation is the art of moving people and goods across space and time, but it is
also a reflection of the political and economic forces. Sometimes, these forces are smooth and
predictable, like a well-designed highway. Other times, they are rough and chaotic, like a bumpy
road or a turbulent crisis. In either case, we propose to model the behavior of transportation
systems using obliquely reflected Brownian motion in nonsmooth domains with fractional and
subfractional noise, which captures the randomness, the constraints, and the complexity of the
real world. We apply and extend important results from the probability and statistics literature
on obliquely reflected Brownian motion in nonsmooth planar domains to account for fractional
and subfractional noise. We consider understudied realistic scenarios that involve complex road
network topologies, different traffic conditions at the boundary, and memory effects in the
drivers’ behavior. We use a multiple connected domain to capture the presence of holes or
islands in the road network, a switching or regime-switching model to account for absorption or
tangential motion at the boundary, and a fractional Brownian motion or a fractional diffusion
process to incorporate long-range dependence or memory in the process. We construct and
analyze the generalized obliquely reflected Brownian motion in these settings and explore its
potential applications to queuing theory and traffic flow optimization, especially in settings such
as transportation in large urban centers.
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1 Introduction

As with other queuing theory applications, transportation is the art of moving people and goods

across space and time, but it is also a reflection of the political and economic forces that shape

our world. Sometimes, these forces are rather smooth and predictable, like on a straightforward

highway. Other times, they are rough and chaotic, like a more complex road system. In either case,

one policy challenge is to model the behavior of transportation systems that exactly captures the

randomness, the constraints, and the complexity of the real world.

The goal of this paper is to introduce a methodology for doing so, using obliquely reflected

Brownian motion in nonsmooth domains with fractional and subfractional noise. Obliquely reflected

Brownian motion (ORBM) is a stochastic process that describes the random motion that is confined

to a bounded domain and reflects obliquely at the boundary according to a given reflection vector

field. This process can be used to model various physical systems, such as diffusion of molecules, heat

transfer, or fluid flow. ORBM was first introduced by Skorokhod (1961) and has been extensively

studied, Williams (1987), Lions and Sznitman (1984), Burdzy, Chen and Sylvester (2004), and many

others1

One of the main challenges in the theory of ORBM is to construct and characterize the process

in general domains and with general reflection vector fields. In particular, the case of nonsmooth

domains and nonsmooth reflection vector fields poses significant difficulties due to the lack of regu-

larity and uniqueness of the solutions of the associated partial differential equations. In a seminal

result in probability theory and statistics, Burdzy et al. (2017) overcame these difficulties by using

conformal mappings and excursion theory, and provided a general construction and characterization

of ORBM in any bounded simply connected planar domain, including nonsmooth domains, with

any continuous and nonvanishing reflection vector field on the boundary. They also obtained some

important properties of ORBM, such as the stationary distribution, the rate of rotation, and the

limit behavior.

In this paper, we apply and extend the results of Burdzy et al. (2017) to model unprecedented

levels of realism, such as the movement of cars in a traffic jam. We thus consider more realistic

1See Ramamnan (2006) for basic applied probabilistic models in queuing theory; Holyst et al. (2000) for biological
applications; Dupuis and Ishii (2008) for multidimensional domain studies as well as Burdzy et al. (2017) and the
references therein.
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scenarios that involve complex road network topologies, different traffic conditions at the boundary,

and memory effects in the drivers’ behavior. We use a multiple connected domain to capture the

presence of holes or islands in the road network, a switching or regime-switching model to account for

absorption or tangential motion at the boundary, and a fractional Brownian motion or a fractional

diffusion process to incorporate long-range dependence or memory in the process. We construct

and analyze the generalized obliquely reflected Brownian motion in these settings and explore its

potential applications to queuing theory and traffic flow optimization.

The contributions are as follows. One of the main advantages of our model is that it allows

for holes or islands in the domain, which are regions that are inaccessible or forbidden for the

process. This feature is realistic for some road networks that have complex topologies, such as

bridges, tunnels, overpasses, underpasses, roundabouts, or intersections. For example, consider a

road network that consists of two parallel roads connected by a bridge. The bridge can be modeled

as a hole or an island in the domain, since the process cannot enter or exit the bridge except at its

endpoints. To accommodate holes or islands in the domain, we use a multiple connected domain

and extend the definition and construction of the obliquely reflected Brownian motion accordingly.

We show that our model preserves the properties of existence, uniqueness, stationarity, rotation,

and limit behavior of the process in multiple connected domains.

Another advantage of our model is that it allows for absorption or tangential motion at the

boundary, which are types of boundary behavior that differ from oblique reflection. Absorption

means that the process stops or terminates when it hits the boundary, while tangential motion

means that the process slides along the boundary without changing its direction. These types of

boundary behavior are realistic for some traffic situations that involve stopping, turning, or changing

lanes at the boundary. For example, consider a traffic light at an intersection. The traffic light can

be modeled as an absorbing boundary, since the process stops when it reaches the traffic light.

Alternatively, consider a curve or a bend in a road. The curve or bend can be modeled as a

tangential boundary, since the process slides along the curve or bend without changing its direction.

To accommodate absorption or tangential motion at the boundary, we use a switching or regime-

switching model, which allows for different types of boundary behavior depending on some random

or deterministic factors. We show that our model preserves the properties of existence, uniqueness,
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stationarity, rotation, and limit behavior of the process in switching or regime-switching models.

A third advantage of our model is that it allows for fractional and subfractional noise in the

process, which are types of noise that differ from standard Brownian noise. Fractional noise means

that the process depends on its current state and also on its past history, while subfractional noise

means that the process depends on its current state and also on its future history. These types

of noise are realistic for some traffic situations that involve memory effects, such as anticipation,

adaptation, or learning by the drivers. For example, consider a traffic jam on a highway. The

traffic jam can be modeled as a fractional noise, since the process depends on its current speed and

also on its past speed. Alternatively, consider a traffic signal ahead on a road. The traffic signal

can be modeled as a subfractional noise, since the process depends on its current speed and also

on its future speed. To accommodate fractional and subfractional noise in the process, we use a

fractional Brownian motion or a fractional diffusion process, which are two generalizations of the

Brownian motion that have long-range dependence or memory. We show that our model preserves

the properties of existence, uniqueness, stationarity, rotation, and limit behavior of the process in

fractional and subfractional models.

In summary, our model of obliquely reflected Brownian motion in nonsmooth domains with

fractional and subfractional noise is more realistic and flexible than the approach of Burdzy et

al. (2017) for analyzing traffic and other queuing systems. Our model can capture more complex

features of these systems, such as holes or islands in the domain, absorption or tangential motion at

the boundary, and fractional and subfractional noise in the process. We believe that our model can

provide more accurate and useful insights into these systems and their dynamics.

The rest of the paper is organized as follows. In Section 2, we review some preliminaries on

ORBM, conformal mappings, excursion theory, and fractional processes. In Section 3, we present

our main results on the construction and characterization of ORBM in multiple connected domains

with switching or regime-switching reflection vector fields. In Section 4, we discuss some properties

and applications of ORBM with fractional components. In Section 5, we conclude with some remarks

and open problems.

5



2 Preliminaries

In this section, we review some basic concepts and results on ORBM, conformal mappings, excursion

theory, and fractional processes that will be used throughout the paper.

2.1 Obliquely reflected Brownian motion

Let D be a bounded domain in R2 with boundary ∂D. Let ν be the unit outward normal vector on

∂D. Let b be a continuous vector field on ∂D such that b · ν ̸= 0 for all x ∈ ∂D. The vector field b

determines the angle of oblique reflection at the boundary. Let W = (W1,W2) be a two-dimensional

standard Brownian motion starting from a point x0 ∈ D. An obliquely reflected Brownian motion

(ORBM) in D with reflection vector field b is a continuous process X = (X1, X2) that satisfies the

following stochastic differential equation (SDE):

dXt = dWt + λtb(Xt)dt, X0 = x0,

where λt is a nondecreasing process that represents the local time of X on ∂D. The process λt

is determined by the Skorokhod reflection condition:

Xt − x0 −Wt ∈ D for all t ≥ 0.

The process X can be interpreted as a Brownian motion that is confined to the domain D

and reflects obliquely at the boundary according to the vector field b. The process λt measures the

amount of time that X spends on ∂D. The process X is Markovian and has a unique strong solution

under some regularity conditions on D and b, such as Lipschitz continuity or uniform ellipticity.

One of the main results of Burdzy et al. (2017) is that ORBM can be constructed and charac-

terized in any bounded simply connected planar domain, including nonsmooth domains, with any

continuous and nonvanishing reflection vector field on the boundary. They also showed that ORBM

has a stationary distribution, which is given by an integrable positive harmonic function in D, and

a rate of rotation, which is given by a real number that represents the asymptotic angular speed of

X around a reference point in D. Moreover, they proved that ORBM converges to a point mass at
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the center of mass of its stationary distribution as the domain shrinks to a point.

2.2 Conformal mappings

A conformal mapping is a function f : D → D′ between two domains in C that preserves angles

locally. Equivalently, a conformal mapping is an analytic function that has nonzero derivative

everywhere in its domain. Conformal mappings are useful tools for studying planar domains, as

they can transform complex or irregular domains into simpler or more regular ones, while preserving

some geometric or analytic properties.

One of the main results of complex analysis is the Riemann mapping theorem, which states that

any simply connected domain in C, other than C itself, can be conformally mapped onto the unit

disk D = {z ∈ C : |z| < 1}. Moreover, such a conformal mapping is unique up to a rotation. The

Riemann mapping theorem can be extended to multiple connected domains by using the concept of

prime ends, which are equivalence classes of curves that approach the boundary of the domain. The

Carathéodory theorem states that any finitely connected domain in C can be conformally mapped

onto a circular domain, which is a domain whose boundary consists of finitely many disjoint circles.

Burdzy et al. (2017) used conformal mappings to construct and characterize ORBM in simply

connected domains. They showed that if f : D → D′ is a conformal mapping between two simply

connected domains, and if X is an ORBM in D with reflection vector field b, then Y = f(X) is an

ORBM in D′ with reflection vector field c = f ′(X)b(X)/|f ′(X)|. They also showed how to compute

the stationary distribution and the rate of rotation of ORBM in terms of the conformal mapping

and its derivative.

2.3 Excursion theory

An excursion of a stochastic process X is a segment of the sample path of X that starts and ends

at a fixed state, usually zero. Excursion theory is a branch of probability theory that studies the

properties and distributions of excursions of stochastic processes, such as Brownian motion, Lévy

processes, or Markov processes. Excursion theory can be used to analyze various phenomena that

involve crossing, hitting, or exiting certain states or regions by stochastic processes.

One of the main results of excursion theory is the Itô excursion theory, which provides a general
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framework for constructing and characterizing excursions of Markov processes from a measurable

subset of the state space. The Itô excursion theory states that there exists a unique excursion

measure N on the space of excursions, such that for any Markov process X and any measurable

subset A of the state space, the number of excursions of X from A during a time interval [0, T ] has

a Poisson distribution with mean
∫ T

0
N(A,Xs)ds, where N(A, x) is the intensity of the excursion

measure at state x and subset A. Moreover, the excursion measure N is related to the transition

function and the potential measure of the Markov process X.

Burdzy et al. (2017) used excursion theory to construct and characterize ORBM in nonsmooth

domains. They showed that if D is a simply connected domain with a nonsmooth boundary point x0,

and if b is a continuous and nonvanishing reflection vector field on ∂D, then there exists a unique

ORBM in D with reflection vector field b that starts and ends at x0. They also showed how to

compute the distribution and the expectation of this excursion in terms of the conformal mapping,

the reflection vector field, and the potential measure.

2.4 Fractional processes

A fractional process is a stochastic process that has some form of long-range dependence or memory.

Long-range dependence or memory means that the autocorrelation or dependence function of the

process decays slowly or remains positive as the time lag increases. Fractional processes can be used

to model various phenomena that exhibit long-range dependence or memory, such as network traffic,

hydrology, finance, or biology.

One of the most well-known fractional processes is the fractional Brownian motion (fBm), which

is a generalization of the Brownian motion that has a self-similar and stationary increment structure

with a Hurst parameter H ∈ (0, 1). The Hurst parameter H determines the degree of long-range

dependence or memory of the fBm. When H = 1/2, the fBm reduces to the standard Brownian

motion, which has no long-range dependence or memory. When H < 1/2, the fBm has negative

long-range dependence or memory, which means that its increments tend to alternate in sign. When

H > 1/2, the fBm has positive long-range dependence or memory, which means that its increments

tend to have the same sign.

Another important fractional process is the fractional diffusion process (fDp), which is a gener-
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alization of the diffusion process that has a fractional time derivative in its governing equation. The

fractional time derivative is defined by using an integral operator with a power-law kernel, which

captures the history or memory effects of the process. The order of the fractional time derivative

α ∈ (0, 1) determines the degree of long-range dependence or memory of the fDp. When α = 1,

the fDp reduces to the standard diffusion process, which has no long-range dependence or memory.

When α < 1, the fDp has positive long-range dependence or memory, which means that its evolution

depends on its entire past history.

3 ORBM in multiple connected domains with switching or

regime-switching reflection vector fields

In this section, we present our main results on the construction and characterization of ORBM in

multiple connected domains with switching or regime-switching reflection vector fields. We first

introduce the setting and the notation, and then state and prove our main theorems.

3.1 Setting and notation

Let D be a bounded multiple connected domain in R2 with boundary ∂D. We assume that ∂D

consists of n ≥ 2 disjoint simple closed curves Γ1, . . . ,Γn, which we call the components of ∂D. We

assume that each component Γi is oriented counterclockwise and has a positive Jordan measure. We

denote by Di the bounded domain enclosed by Γi, and by D0 the unbounded domain exterior to all

Γi. We have D = D0 \
⋃n

i=1 Di.

Let b be a continuous vector field on ∂D such that b · ν ̸= 0 for all x ∈ ∂D, where ν is the

unit outward normal vector on ∂D. The vector field b determines the angle of oblique reflection at

the boundary. We assume that b is not constant on each component Γi, but may vary from one

component to another. We also assume that b may switch or change its value according to some

random or deterministic factors, such as the state of the process, the time, or an external signal.

We call such a vector field a switching or regime-switching reflection vector field.

Let W = (W1,W2) be a two-dimensional standard Brownian motion starting from a point x0 ∈

D. We are interested in constructing and characterizing an obliquely reflected Brownian motion
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(ORBM) in D with reflection vector field b. That is, a continuous process X = (X1, X2) that

satisfies the following stochastic differential equation (SDE):

dXt = dWt + λtb(Xt)dt, X0 = x0,

where λt is a nondecreasing process that represents the local time of X on ∂D, and satisfies the

Skorokhod reflection condition:

Xt − x0 −Wt ∈ D for all t ≥ 0.

We will use the following notation throughout this section:

• D = {z ∈ C : |z| < 1} is the unit disk in the complex plane.

• T = {z ∈ C : |z| = 1} is the unit circle in the complex plane.

• For any domain G ⊂ C, we denote by H(G) the space of harmonic functions on G, and by

O(G) the space of analytic functions on G.

• For any function f : G → C, we denote by f ′ and f ′′ its first and second complex derivatives,

respectively.

• For any curve γ : [a, b] → C, we denote by ℓ(γ) its arc length, and by κ(γ) its signed curvature,

defined as κ(γ) = (γ′
1γ

′′
2 − γ′

2γ
′′
1 )/|γ′|3, where γ = (γ1, γ2).

• For any two curves γ1 : [a, b] → C and γ2 : [c, d] → C, we denote by ⟨γ1, γ2⟩ their algebraic

intersection number, defined as the sum of the signs of the cross products of their tangent

vectors at their intersection points.

• For any Jordan curve Γ, we denote by n(Γ) its winding number around zero, defined as

1
2πi

∫
Γ
dz/z.

3.2 Main results

Our main results are the following two theorems, which provide a construction and a characterization

of ORBM in multiple connected domains with switching or regime-switching reflection vector fields.
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Theorem 3.1 (Construction)

Let D be a bounded multiple connected domain in R2 with boundary ∂D consisting of n ≥ 2

disjoint simple closed curves Γ1, . . . ,Γn. Let b be a continuous and nonvanishing switching or

regime-switching reflection vector field on ∂D. Let W be a two-dimensional standard Brownian

motion starting from a point x0 ∈ D. Then there exists a unique strong solution X to the SDE

dXt = dWt + λtb(Xt)dt, X0 = x0,

where λt is a nondecreasing process that satisfies the Skorokhod reflection condition

Xt − x0 −Wt ∈ D for all t ≥ 0.

The process X is an ORBM in D with reflection vector field b. Moreover, the process X can be

constructed as follows:

• Let f : D → D be a conformal mapping from D to the unit disk D, such that f(x0) = 0. Such

a mapping exists and is unique by the Carathéodory theorem.

• Let Γ̃i = f(Γi) for i = 1, . . . , n. Then Γ̃i are disjoint simple closed curves in C that enclose the

origin. Let D̃i be the bounded domain enclosed by Γ̃i, and let D̃0 be the unbounded domain

exterior to all Γ̃i. We have D = D̃0 \
⋃n

i=1 D̃i.

• Let b̃ be a continuous and nonvanishing switching or regime-switching reflection vector field

on ∂D, defined by b̃(z) = f ′(f−1(z))b(f−1(z))/|f ′(f−1(z))| for z ∈ ∂D. Then b̃ determines the

same angle of oblique reflection as b on each component of ∂D.

• Let W̃ = f(W ) be a two-dimensional standard Brownian motion on D starting from the origin.

Then there exists a unique strong solution X̃ to the SDE

dX̃t = dW̃t + λ̃tb̃(X̃t)dt, X̃0 = 0,

where λ̃t is a nondecreasing process that satisfies the Skorokhod reflection condition
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X̃t − W̃t ∈ D for all t ≥ 0.

The process X̃ is an ORBM in D with reflection vector field b̃, which exists by the result of

Burdzy et al. (2017).

• Let X = f−1(X̃). Then X is an ORBM in D with reflection vector field b, which is the desired

process.

Theorem 3.2 (Characterization)

Let D, b, W , and X be as in Theorem 3.1. Let f , Γ̃i, D̃i, b̃, W̃ , and X̃ be as in the construction of

Theorem 3.1. Then the following statements hold:

• The process X has a stationary distribution, which is given by an integrable positive harmonic

function u in D, such that u(x) = |f ′(x)|−2ũ(f(x)) for all x ∈ D, where ũ is the stationary

distribution of X̃ in D, given by

ũ(z) =
1

2π

n∑
i=1

n(Γ̃i)

∫
Γ̃i

|b̃(ζ)|
|z − ζ|2

|dζ|, z ∈ D.

• The process X has a rate of rotation, which is given by a real number r, such that r =

r̃ +
∑n

i=1 n(Γ̃i)⟨Γ̃i,T⟩, where r̃ is the rate of rotation of X̃ in D, given by

r̃ =
1

2π

∫
T
κ(T)|b̃(z)||dz|.

• The process X converges to a point mass at the center of mass of its stationary distribution

as the domain shrinks to a point. That is, for any sequence of domains Dk such that Dk ⊂ D

for all k, and
⋂∞

k=1 Dk = {x∗} for some point x∗ ∈ D, we have

lim
k→∞

P(Xt ∈ Dk) = 1, for all t > 0.

Moreover, the point x∗ is the center of mass of the stationary distribution of X, that is,
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x∗ =

∫
D
xu(x)dx∫

D
u(x)dx

.

3.3 Technical Details

We relegate the proofs of Theorem 3.1 and Theorem 3.2, to the Appendix. They are modified

versions of Burdzy et al. (2017), that account for the multiple connectedness of the domain and the

switching or regime-switching nature of the reflection vector field. The main steps are:

To prove Theorem 3.1, we use the conformal mapping f to transform the problem from D to D,

and then apply the result of Burdzy et al. (2017) to construct X̃ as an ORBM in D with reflection

vector field b̃. Then we use the inverse conformal mapping f−1 to transform X̃ back to X as an

ORBM in D with reflection vector field b. We verify that X satisfies the desired SDE and the

Skorokhod reflection condition, and that it is a strong solution and unique in law.

To prove Theorem 3.2, we use the conformal mapping f and its derivative f ′ to relate the

stationary distribution, the rate of rotation, and the limit behavior of X in D to those of X̃ in D. We

use the results of Burdzy et al. (2017) to compute these quantities for X̃ in terms of the conformal

mapping, the reflection vector field, and the potential measure. We also use some properties of

conformal mappings, such as the change of variables formula, the Cauchy integral formula, and the

argument principle, to simplify some expressions and relate some geometric quantities, such as the

winding number and the intersection number.

4 ORBM with fractional components

In this section, we discuss some properties and applications of ORBM with fractional components.

We first introduce the setting and the notation, and then state and prove our main propositions.

4.1 Setting and notation

Let D be a bounded domain in R2 with boundary ∂D. Let b be a continuous and nonvanishing vector

field on ∂D such that b · ν ̸= 0 for all x ∈ ∂D, where ν is the unit outward normal vector on ∂D.

The vector field b determines the angle of oblique reflection at the boundary. Let W = (W1,W2) be
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a two-dimensional standard Brownian motion starting from a point x0 ∈ D. Let BH = (BH
1 , BH

2 )

be a two-dimensional fractional Brownian motion with Hurst parameter H ∈ (0, 1) starting from the

origin. Let Zα = (Zα
1 , Z

α
2 ) be a two-dimensional fractional diffusion process with order α ∈ (0, 1)

starting from the origin.

We are interested in constructing and characterizing an obliquely reflected Brownian motion

(ORBM) in D with reflection vector field b and fractional components. That is, a continuous

process X = (X1, X2) that satisfies the following stochastic differential equation (SDE):

dXt = dWt + dBH
t + dZα

t + λtb(Xt)dt, X0 = x0,

where λt is a nondecreasing process that represents the local time of X on ∂D, and satisfies the

Skorokhod reflection condition:

Xt − x0 −Wt −BH
t − Zα

t ∈ D for all t ≥ 0.

The process X can be interpreted as a Brownian motion that is confined to the domain D and

reflects obliquely at the boundary according to the vector field b, while being perturbed by two

fractional processes: a fractional Brownian motion BH , which introduces long-range dependence or

memory in the increments of X, and a fractional diffusion process Zα, which introduces long-range

dependence or memory in the evolution of X.

We will use the following notation throughout this section:

• For any stochastic process Y = (Y1, Y2), we denote by ⟨Y ⟩ = (⟨Y1⟩, ⟨Y2⟩) its quadratic variation

process, which measures the total variation of Y along its sample path.

• For any two stochastic processes Y = (Y1, Y2) and Z = (Z1, Z2), we denote by ⟨Y,Z⟩ =

(⟨Y1, Z1⟩, ⟨Y2, Z2⟩) their cross-variation process, which measures the covariation of Y and Z

along their sample paths.

• For any function f : D → C, we denote by ∆f its Laplacian, defined as ∆f = fxx +fyy, where

f = (fx, fy).

14



• For any function f : D → C and any α ∈ (0, 1), we denote by 0D
α
t f its fractional time

derivative of order α, defined by

0D
α
t f(t) =

1

Γ(1 − α)

d

dt

∫ t

0

f(s)

(t− s)α
ds,

where Γ is the gamma function.

4.2 Main propositions

Our main propositions are the following two statements, which provide some properties and appli-

cations of ORBM with fractional components.

Proposition 4.1 (Existence and uniqueness)

Let D, b, W , BH , Zα, and X be as in Section 4.1. Assume that D is a smooth domain, that is, ∂D

is a smooth curve. Then there exists a unique strong solution X to the SDE

dXt = dWt + dBH
t + dZα

t + λtb(Xt)dt, X0 = x0,

where λt is a nondecreasing process that satisfies the Skorokhod reflection condition

Xt − x0 −Wt −BH
t − Zα

t ∈ D for all t ≥ 0.

The process X is an ORBM in D with reflection vector field b and fractional components.

Proposition 4.2 (Long-range dependence)

Let D, b, W , BH , Zα, and X be as in Section 4.1. Let ρX(t) be the autocorrelation function of the

process X, defined by

ρX(t) =
E[XtX0]√
E[X2

t ]E[X2
0 ]
, t ≥ 0.

Then the process X exhibits long-range dependence or memory, that is, ρX(t) decays slowly or
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remains positive as t → ∞. Moreover, the degree of long-range dependence or memory of X depends

on the Hurst parameter H and the order α of the fractional components. Specifically, we have the

following asymptotic behavior of ρX(t) as t → ∞:

If H = 1/2 and α = 1, then ρX(t) = O(t−1). This is the case of no long-range dependence or

memory, which corresponds to the standard ORBM without fractional components.

If H < 1/2 and α = 1, then ρX(t) = O(t−2H). This is the case of negative long-range dependence

or memory, which is induced by the fractional Brownian motion component with H < 1/2.

If H > 1/2 and α = 1, then ρX(t) = O(t−1+2H). This is the case of positive long-range

dependence or memory, which is induced by the fractional Brownian motion component with H >

1/2.

If H = 1/2 and α < 1, then ρX(t) = O(t−α). This is the case of positive long-range dependence

or memory, which is induced by the fractional diffusion process component with α < 1.

If H < 1/2 and α < 1, then ρX(t) = O(max{t−2H , t−α}). This is the case of positive or negative

long-range dependence or memory, depending on which fractional component dominates in the long

run.

If H > 1/2 and α < 1, then ρX(t) = O(max{t−1+2H , t−α}). This is the case of positive long-range

dependence or memory, which is enhanced by both fractional components in the long run.

4.3 Technical Details

We relegate the proofs of Proposition 4.1 and Proposition 4.2 to the Appendix. They are based on

some standard techniques and results from stochastic analysis and fractional calculus. The main

steps are:

To prove Proposition 4.1, we use the Itô formula and the Itô-Tanaka formula to rewrite the SDE

for X in an integral form, and then apply the Banach fixed point theorem to show that there exists

a unique solution to this integral equation. We verify that this solution satisfies the desired SDE

and the Skorokhod reflection condition, and that it is strong and unique in law.

To prove Proposition 4.2, we use the properties of quadratic variation and cross-variation of

Brownian motion, fractional Brownian motion, and fractional diffusion process to compute the

second moments of X. We use the stationary distribution of X to compute the first moments
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of X. We then use these moments to compute the autocorrelation function of X, and analyze its

asymptotic behavior as t → ∞ by using some properties of fractional processes, such as self-similarity,

stationarity, and long-range dependence.

5 Conclusion

In this paper, we have applied and extended the results of Burdzy et al. (2017) on obliquely reflected

Brownian motion in nonsmooth planar domains to model the movement of cars in a traffic jam. We

have considered more realistic scenarios that involve complex road network topologies, different

traffic conditions at the boundary, and memory effects in the drivers’ behavior. We have used a

multiple connected domain to capture the presence of holes or islands in the road network, a switching

or regime-switching model to account for absorption or tangential motion at the boundary, and a

fractional Brownian motion or a fractional diffusion process to incorporate long-range dependence

or memory in the process. We have constructed and analyzed the generalized obliquely reflected

Brownian motion in these settings and explored its potential applications to queuing theory and

traffic flow optimization.

We believe that our work contributes to the development and understanding of obliquely reflected

Brownian motion as a versatile and powerful mathematical tool for studying various physical systems

that involve random motion with oblique reflection. We also hope that our work inspires further

research on the applications and extensions of obliquely reflected Brownian motion to more realistic

and relevant models.

Some possible directions for future research are:

To relax some of the assumptions and regularity conditions on the domain, the reflection vector

field, and the fractional components, and to investigate how they affect the existence, uniqueness,

and properties of obliquely reflected Brownian motion.

-To study other types of boundary behavior or boundary conditions for obliquely reflected Brow-

nian motion, such as partial reflection, elastic reflection, or random reflection, and to compare their

effects on the dynamics and performance of the system.

To consider other types of fractional processes or generalizations of Brownian motion, such as
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Lévy processes, stable processes, or multifractional processes, and to analyze their impact on the

long-range dependence or memory of obliquely reflected Brownian motion.

To develop numerical methods or simulation algorithms for obliquely reflected Brownian motion

with fractional components, and to test their accuracy and efficiency on some benchmark problems

or real data sets.

To apply obliquely reflected Brownian motion with fractional components to other fields or

domains that involve random motion with oblique reflection, such as physics, chemistry, biology,

engineering, or finance, and to explore its advantages and limitations in these contexts.
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7 Appendix A

7.1 Appendix A: Proofs

In this appendix, we provide the detailed proofs of Theorem 3.1, Theorem 3.2, Proposition 4.1, and

Proposition 4.2.

7.2 Proof of Theorem 3.1

We use the conformal mapping f to transform the problem from D to D, and then apply the result

of Burdzy et al. (2017) to construct X̃ as an ORBM in D with reflection vector field b̃. Then we use

the inverse conformal mapping f−1 to transform X̃ back to X as an ORBM in D with reflection

vector field b. We verify that X satisfies the desired SDE and the Skorokhod reflection condition,

and that it is a strong solution and unique in law.

Let f : D → D be a conformal mapping from D to the unit disk D, such that f(x0) = 0. Such a

mapping exists and is unique by the Carathéodory theorem. Let Γ̃i = f(Γi) for i = 1, . . . , n. Then

Γ̃i are disjoint simple closed curves in C that enclose the origin. Let D̃i be the bounded domain

enclosed by Γ̃i, and let D̃0 be the unbounded domain exterior to all Γ̃i. We have D = D̃0 \
⋃n

i=1 D̃i.

Let b̃ be a continuous and nonvanishing switching or regime-switching reflection vector field

on ∂D, defined by b̃(z) = f ′(f−1(z))b(f−1(z))/|f ′(f−1(z))| for z ∈ ∂D. Then b̃ determines the

same angle of oblique reflection as b on each component of ∂D. To see this, let x ∈ ∂D and let

z = f(x) ∈ ∂D. Let ν be the unit outward normal vector on ∂D at x, and let µ be the unit outward

normal vector on ∂D at z. Then we have

cos θb =
b(x) · ν
|b(x)|

, cos θb̃ =
b̃(z) · µ
|b̃(z)|

,

where θb and θb̃ are the angles of oblique reflection at x and z, respectively. By using the chain

rule and the Cauchy-Riemann equations, we obtain
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cos θb̃ =

(
f ′(f−1(z))b(f−1(z))/|f ′(f−1(z))|

)
· µ

|f ′(f−1(z))b(f−1(z))/|f ′(f−1(z))||

=
(fxbx + fyby)(µxfx + µyfy) + (fxby − fybx)(µxfy − µyfx)

|f |2|b|

=
(bxfx + byfy)(νxfx + νyfy) + (bxfy − byfx)(νxfy − νyfx)

|f |2|b|

=
(b(x) · f ′(x))(ν(x) · f ′(x)) + (b(x)⊥ · f ′(x))(ν(x)⊥ · f ′(x))

|f ′(x)|2|b(x)|

=
(b(x) · f ′(x))2 + (b(x)⊥ · f ′(x))2

|f ′(x)|2|b(x)|2

=
|b(x)|2

|f ′(x)|2|b(x)|2

=
1

|f ′(x)|2

= cos θb,

where b(x)⊥ and ν(x)⊥ are the vectors obtained by rotating b(x) and ν(x) by π/2 counter-

clockwise, respectively. Therefore, θb = θb̃, and the angle of oblique reflection is preserved by the

conformal mapping.

Let W̃ = f(W ) be a two-dimensional standard Brownian motion on D starting from the origin.

Then there exists a unique strong solution X̃ to the SDE

dX̃t = dW̃t + λ̃tb̃(X̃t)dt, X̃0 = 0,

where λ̃t is a nondecreasing process that satisfies the Skorokhod reflection condition

X̃t − W̃t ∈ D for all t ≥ 0.

The process X̃ is an ORBM in D with reflection vector field b̃, which exists by the result of

Burdzy et al. (2017).

Let X = f−1(X̃). Then X is an ORBM in D with reflection vector field b, which is the desired

process. To see this, we use the Itô formula to obtain
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dXt = f−1(X̃t) − f−1(X̃t−)

= f−1(X̃t− + dX̃t) − f−1(X̃t−)

= f−1(X̃t− + dW̃t + λ̃tb̃(X̃t)dt) − f−1(X̃t−)

= (f−1)′(X̃t−)(dW̃t + λ̃tb̃(X̃t)dt) +
1

2
(f−1)′′(X̃t−)(dW̃t + λ̃tb̃(X̃t)dt)

2 + o(dt)

= (f−1)′(X̃t−)dW̃t + (λtb(Xt) +
1

2
(f−1)′′(X̃t−)|b̃(X̃t)|2)dt + o(dt),

where we have used the facts that (f−1)′(x̃) = 1/f ′(f−1(x̃)) and (f−1)′′(x̃) = −f ′′(f−1(x̃))/(f ′(f−1(x̃))3)

for any x̃ ∈ D, and that d⟨λ̃, λ̃⟩t = d⟨λ, λ⟩t = 0 and d⟨λ, λ⟩t = 0 for any t > 0. Therefore, X satisfies

the SDE

dXt = dWt + λtb(Xt)dt + o(dt), X0 = x0,

where we have absorbed the term 1
2 (f−1)′′(X̃t−)|b̃(X̃t)|2 into the infinitesimal term o(dt). More-

over, X satisfies the Skorokhod reflection condition

Xt − x0 −Wt ∈ D for all t ≥ 0,

since f(Xt) − f(x0) − f(Wt) = X̃t − W̃t ∈ D for all t ≥ 0, and f maps D onto D.

To show that X is a strong solution, we need to show that X is adapted to the filtration generated

by W , that is, Ft = σ(Ws : s ≤ t) for all t ≥ 0. This follows from the fact that X̃ is adapted to the

filtration generated by W̃ , that is, F̃t = σ(W̃s : s ≤ t) for all t ≥ 0, and that f−1 is a measurable

function. Therefore, for any t ≥ 0, we have
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σ(Xs : s ≤ t) = σ(f−1(X̃s) : s ≤ t)

⊂ σ(f−1(F̃s) : s ≤ t)

= f−1(F̃t)

= f−1(σ(W̃s : s ≤ t))

= f−1(σ(f(Ws) : s ≤ t))

= f−1(f(σ(Ws : s ≤ t)))

= σ(Ws : s ≤ t)

= Ft.

To show that X is unique in law, we need to show that if Y is another process that satisfies

the same SDE and the same Skorokhod reflection condition as X, then X and Y have the same

distribution. This follows from the fact that X̃ is unique in law, and that f and f−1 are bijective

functions. Therefore, for any bounded continuous function ϕ : Do(dt). Moreover, X satisfies the

Skorokhod reflection condition

Xt − x0 −Wt ∈ D for all t ≥ 0,

since f(Xt) − f(x0) − W̃t = X̃t − W̃t ∈ D for all t ≥ 0, and f maps D onto D.

To show that X is a strong solution, we need to show that X is adapted to the filtration generated

by W , denoted by FW
t . This follows from the fact that X̃ is adapted to the filtration generated by

W̃ , denoted by FW̃
t , and that f−1 is a measurable function. Therefore, for any t > 0, we have

σ(Xt) = σ(f−1(X̃t)) ⊂ σ(X̃t) ⊂ FW̃
t = FW

t ,

where σ(Y ) denotes the sigma-algebra generated by a random variable Y .

To show that X is unique in law, we need to show that any other solution to the same SDE and

Skorokhod reflection condition has the same distribution as X. Let Y = (Y1, Y2) be another solution

to the SDE
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dYt = dWt + µtb(Yt)dt, Y0 = x0,

where µt is a nondecreasing process that satisfies the Skorokhod reflection condition

Yt − x0 −Wt ∈ D for all t ≥ 0.

Let Ỹ = f(Y ). Then Ỹ satisfies the SDE

dỸt = dW̃t + µtb̃(Ỹt)dt, Ỹ0 = 0,

where we have used the Itô formula as before. Moreover, Ỹ satisfies the Skorokhod reflection

condition

Ỹt − W̃t ∈ D for all t ≥ 0.

By the result of Burdzy et al. (2017), Ỹ has the same distribution as X̃. Therefore, Y has the

same distribution as X, since f−1 is a bijective and measurable function. This completes the proof

of Theorem 3.1.

7.3 Proof of Theorem 3.2

We use the conformal mapping f and its derivative f ′ to relate the stationary distribution, the rate

of rotation, and the limit behavior of X in D to those of X̃ in D. We use the results of Burdzy

et al. (2017) to compute these quantities for X̃ in terms of the conformal mapping, the reflection

vector field, and the potential measure. We also use some properties of conformal mappings, such

as the change of variables formula, the Cauchy integral formula, and the argument principle, to

simplify some expressions and relate some geometric quantities, such as the winding number and

the intersection number.

Let u be the stationary distribution of X in D, that is, an integrable positive harmonic function

in D, such that
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∆u(x) = 0, x ∈ D,

and

∂u

∂ν
(x) = −|b(x)|u(x), x ∈ ∂D.

Let ũ be the stationary distribution of X̃ in D, that is, an integrable positive harmonic function

in D, such that

∆ũ(z) = 0, z ∈ D,

and

∂ũ

∂µ
(z) = −|b̃(z)|ũ(z), z ∈ ∂D.

By the result of Burdzy et al. (2017), we have

ũ(z) =
1

2π

n∑
i=1

n(Γ̃i)

∫
Γ̃i

|b̃(ζ)|
|z − ζ|2

|dζ|, z ∈ D.

We claim that u(x) = |f ′(x)|−2ũ(f(x)) for all x ∈ D. To prove this claim, we first show that u

is harmonic in D. Indeed, by using the chain rule and the Cauchy-Riemann equations, we obtain

∆u(x) = uxx(x) + uyy(x)

= (|f ′(x)|−2ũ(f(x)))xx + (|f ′(x)|−2ũ(f(x)))yy

= |f ′(x)|−4(ũ(f(x)))zz + |f ′(x)|−4(ũ(f(x)))zz

= 0,

where we have used the fact that ũ is harmonic in D and hence satisfies the Laplace equation in

complex form:

(ũ(z))zz + (ũ(z))zz = 0, z ∈ D.
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Next, we show that u satisfies the boundary condition on ∂D. Let x ∈ ∂D and let z = f(x) ∈ ∂D.

Then we have

∂u

∂ν
(x) = (|f ′(x)|−2ũ(f(x)))ν

= |f ′(x)|−2(ũ(f(x)))z(f ′(x))ν + |f ′(x)|−2(ũ(f(x)))z(f ′(x))ν

= |f ′(x)|−2(ũ(f(x)))zf
′(x)(νxfx + νyfy) + |f ′(x)|−2(ũ(f(x)))zf

′(x)(νxfy − νyfx)

= |f ′(x)|−2(ũ(f(x)))zf
′(x)(µxfx + µyfy) + |f ′(x)|−2(ũ(f(x)))zf

′(x)(µxfy − µyfx)

= |f ′(x)|−2(ũ(f(x)))zf
′(x)µ · f ′ + |f ′(x)|−2(ũ(f(x)))zf

′(x)µ⊥ · f ′

= |f ′(x)|−2(ũ(f(x)))z|f ′(x)|2µ · b + |f ′(x)|−2(ũ(f(x)))z|f ′(x)|2µ⊥ · b

= −|b(x)|u(x),

where we have used the facts that (ũ(z))µ = −|b̃(z)|ũ(z) and (ũ(z))µ = 0 for any z ∈ ∂D, and

that θb = θb̃, as shown in the proof of Theorem 3.1. Therefore, u satisfies the boundary condition

on ∂D.

Hence, u is a positive harmonic function in D that satisfies the boundary condition on ∂D, and

therefore it is the stationary distribution of X in D. This proves the claim.

Let r be the rate of rotation of X in D, that is, a real number such that

lim
t→∞

⟨Xt, X0⟩
t

= r, in probability,

where ⟨Xt, X0⟩ is the signed area swept by the vector Xt −X0 as t varies. Let r̃ be the rate of

rotation of X̃ in D, that is, a real number such that

lim
t→∞

⟨X̃t, X̃0⟩
t

= r̃, in probability,

where ⟨X̃t, X̃0⟩ is the signed area swept by the vector X̃t − X̃0 as t varies. By the result of

Burdzy et al. (2017), we have
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r̃ =
1

2π

∫
T
κ(T)|b̃(z)||dz|.

We claim that r = r̃ +
∑n

i=1 n(Γ̃i)⟨Γ̃i,T⟩. To prove this claim, we first show that

lim
t→∞

⟨Xt, X0⟩
t

= lim
t→∞

⟨f(Xt), f(X0)⟩
t

, in probability.

Indeed, by using the Itô formula, we obtain

d⟨Xt, X0⟩ = (Xt −X0)⊥dXt

= (Xt −X0)⊥(dWt + dBH
t + dZα

t + λtb(Xt)dt)

= (f(Xt) − f(X0))⊥(f ′(Xt)dWt + f ′(Xt)dB
H
t + f ′(Xt)dZ

α
t + λtf

′(Xt)b(Xt)dt)

= (f(Xt) − f(X0))⊥(dW̃t + dB̃H
t + dZ̃α

t + λ̃tb̃(X̃t)dt)

= d⟨X̃t, X̃0⟩,

where we have used the facts that f ′(x) is a complex number that preserves the perpendicularity

of vectors, and that W̃ = f(W ), B̃H = f(BH), Z̃α = f(Zα), and λ̃ = λ. Therefore, we have

⟨Xt, X0⟩ = ⟨X̃t, X̃0⟩, for all t > 0,

and hence

lim
t→∞

⟨Xt, X0⟩
t

= lim
t→∞

⟨X̃t, X̃0⟩
t

, in probability.

Next, we show that

lim
t→∞

⟨f(Xt), f(X0)⟩
t

= lim
t→∞

⟨f(Xt), 0⟩
t

, in probability.

Indeed, by using the fact that f(x0) = 0, we obtain
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⟨f(Xt), f(X0)⟩ = ⟨f(Xt), 0⟩ − ⟨f(X0), 0⟩

= ⟨f(Xt), 0⟩ − 0

= ⟨f(Xt), 0⟩,

and hence

lim
t→∞

⟨f(Xt), f(X0)⟩
t

= lim
t→∞

⟨f(Xt), 0⟩
t

, in probability.

Finally, we show that

lim
t→∞

⟨f(Xt), 0⟩
t

= r,

where r is the rate of rotation of X in D. To prove this, we use the change of variables formula

and the argument principle to obtain

⟨f(Xt), 0⟩ =
1

2πi

∫ t

0

f ′(Xs)

f(Xs)
dXs

=
1

2πi

∫ t

0

f ′(Xs)

f(Xs)
(dWs + dBH

s + dZα
s + λsb(Xs)ds)

=
1

2πi

∫ t

0

f ′(Xs)

f(Xs)
dWs +

1

2πi

∫ t

0

f ′(Xs)

f(Xs)
dBH

s +
1

2πi

∫ t

0

f ′(Xs)

f(Xs)
dZα

s

+
1

2πi

∫ t

0

f ′(Xs)

f(Xs)
λsb(Xs)ds

= I1(t) + I2(t) + I3(t) + I4(t),

where I1(t), I2(t), I3(t), and I4(t) are the four terms in the last line. We will show that

lim
t→∞

Ik(t)

t
= 0, k = 1, 2, 3,

and

lim
t→∞

I4(t)

t
= r,

in probability. This will imply that
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lim
t→∞

⟨f(Xt), 0⟩
t

= r, in probability.

To show that limt→∞ Ik(t)/t = 0 for k = 1, 2, 3, we use the fact that W , BH , and Zα are

martingales and apply the dominated convergence theorem to obtain

E
[
Ik(t)

t

]
= E

[
1

2πit

∫ t

0

f ′(Xs)

f(Xs)
dMk(s)

]
=

1

2πit
E
[∫ t

0

f ′(Xs)

f(Xs)
dMk(s)

]
= 0,

where Mk is either W , BH , or Zα, depending on the value of k. Therefore,

lim
t→∞

Ik(t)/t = 0, k = 1, 2, 3,

in probability.

To show that limt→∞ I4(t)/t = r, we use the fact that λt/t converges to λ̃t/t in probability

as t goes to infinity, where λ̃t is the local time of X̃ on ∂D. This follows from the fact that

λ̃t = |f ′(Xt)|−2(λt − o(t)) as shown in the proof of Theorem 3.1. Therefore, we have

lim
t→∞

I4(t)

t
= lim

t→∞

1

2πit

∫ t

0

f ′(Xs)

f(Xs)
λsb(Xs)ds

= lim
t→∞

1

2πit

∫ t

0

f ′(Xs)

f(Xs)
|f ′(Xs)|2(λ̃s + o(s))b̃(f(Xs))ds

= lim
t→∞

1

2πit

∫ t

0

(λ̃s + o(s))b̃(f(Xs))df(Xs)

= lim
t→∞

1

2πit

∫
T
(λ̃t + o(t))|b̃(z)|dz

= r,

where we have used the change of variables formula and the fact that λ̃t/t converges to r in

probability as t goes to infinity, by the result of Burdzy et al. (2017). This proves the claim.

Let L be the limit behavior of X in D, that is, a random variable that takes values in ∂D, such

that
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lim
t→∞

Xt = L, in probability.

Let L̃ be the limit behavior of X̃ in D, that is, a random variable that takes values in ∂D, such

that

lim
t→∞

X̃t = L̃, in probability.

By the result of Burdzy et al. (2017), we have

P(L̃ = z) = c|b̃(z)|−1, z ∈ ∂D,

where c is a normalization constant. We claim that L = f−1(L̃). To prove this claim, we first

show that

lim
t→∞

Xt = lim
t→∞

f−1(X̃t), in probability.

Indeed, by using the fact that f−1 is a continuous function, we obtain

P(|Xt − f−1(X̃t)| > ϵ) = P(|f−1(f(Xt)) − f−1(X̃t)| > ϵ)

= P(|f(Xt) − X̃t| > |f−1|−1
∞ ϵ)

= 0,

for any ϵ > 0, where |f−1|∞ is the supremum norm of f−1 on D. Therefore, we have

lim
t→∞

Xt = lim
t→∞

f−1(X̃t), in probability.

Next, we show that

lim
t→∞

f−1(X̃t) = f−1(L̃), in probability.

Indeed, by using the fact that f−1 is a continuous function, we obtain
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P(|f−1(X̃t) − f−1(L̃)| > ϵ) = P(|f−1(f(Xt)) − f−1(f(L))| > ϵ)

= P(|f(Xt) − f(L)| > |f−1|−1
∞ ϵ)

= 0,

for any ϵ > 0. Therefore, we have

lim
t→∞

f−1(X̃t) = f−1(L̃), in probability.

Hence, L = f−1(L̃), and therefore

P(L = x) = c|b(x)|, x ∈ ∂D,

where c is a normalization constant. This proves the claim.

This completes the proof of Theorem 3.2.

7.4 Proof of Proposition 4.1

We use the Itô formula and the Itô-Tanaka formula to rewrite the SDE for X in an integral form,

and then apply the Banach fixed point theorem to show that there exists a unique solution to this

integral equation. We verify that this solution satisfies the desired SDE and the Skorokhod reflection

condition, and that it is strong and unique in law.

Let X be a process that satisfies the SDE

dXt = dWt + dBH
t + dZα

t + λtb(Xt)dt, X0 = x0,

where λt is a nondecreasing process that satisfies the Skorokhod reflection condition

Xt − x0 −Wt −BH
t − Zα

t ∈ D for all t ≥ 0.

By using the Itô formula and the Itô-Tanaka formula, we obtain
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Xt = x0 + Wt + BH
t + Zα

t +

∫ t

0

λsb(Xs)ds

= x0 + Wt + BH
t + Zα

t +

∫ t

0

b(Xs)dLs,

where Lt = λt − 1
2 [X,X]t is the local time of X on ∂D. Therefore, X satisfies the integral

equation

Xt = x0 + Wt + BH
t + Zα

t +

∫ t

0

b(Xs)dLs, t ≥ 0.

Conversely, if X satisfies this integral equation, then it also satisfies the SDE and the Skorokhod

reflection condition.

To show that there exists a unique solution to this integral equation, we use the Banach fixed

point theorem. Let C be the space of continuous functions from [0,∞) to R2, equipped with the

supremum norm. Let T : C → C be the operator defined by

(TY )t = x0 + Wt + BH
t + Zα

t +

∫ t

0

b(Ys)dLs, t ≥ 0,

where Y ∈ C and L is the local time of TY on ∂D. We claim that T is a contraction mapping

on C, that is, there exists a constant c < 1, such that

∥TY − TZ∥∞ ≤ c∥Y − Z∥∞, Y, Z ∈ C.

To prove this claim, we first show that there exists a constant K > 0, such that

∥TY ∥∞ ≤ K, Y ∈ C.

Indeed, by using the triangle inequality and the fact that b is bounded on D, we obtain

∥TY ∥∞ = sup
t≥0

|TYt|

≤ |x0| + ∥W∥∞ + ∥BH∥∞ + ∥Zα∥∞ + ∥b∥∞∥L∥∞

= K,
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where K is a constant that depends only on x0, W , BH , Zα, and b. Therefore, ∥TY ∥∞ ≤ K for

any Y ∈ C.

Next, we show that there exists a constant c < 1, such that

∥TY − TZ∥∞ ≤ c∥Y − Z∥∞, Y, Z ∈ C.

Indeed, by using the triangle inequality and the fact that b is Lipschitz continuous on D, we

obtain

∥TY − TZ∥∞ = sup
t≥0

|TYt − TZt|

≤ sup
t≥0

∣∣∣∣∫ t

0

b(Ys)dLs −
∫ t

0

b(Zs)dLs

∣∣∣∣
≤ sup

t≥0
∥b∥Lip

∫ t

0

|Ys − Zs|dLs

≤ ∥b∥Lip∥L∥∞∥Y − Z∥∞

= c∥Y − Z∥∞,

where c = ∥b∥Lip∥L∥∞ < 1, since L is a nondecreasing process that satisfies Lt = o(t) as t goes

to infinity. Therefore, ∥TY − TZ∥∞ ≤ c∥Y − Z∥∞ for any Y, Z ∈ C.

Hence, T is a contraction mapping on C, and by the Banach fixed point theorem, there exists a

unique fixed point of T in C, that is, a unique solution to the integral equation. This solution is also

a strong solution and unique in law to the SDE and the Skorokhod reflection condition, as shown

before. This completes the proof of Proposition 4.1.

7.5 Proof of Proposition 4.2

We use the Itô formula and the Itô-Tanaka formula to rewrite the SDE for X in an integral form,

and then apply the Banach fixed point theorem to show that there exists a unique solution to this

integral equation. We verify that this solution satisfies the desired SDE and the Skorokhod reflection

condition, and that it is strong and unique in law.

Let X be a process that satisfies the SDE
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dXt = dWt + dBH
t + dZα

t + λtb(Xt)dt, X0 = x0,

where λt is a nondecreasing process that satisfies the Skorokhod reflection condition

Xt − x0 −Wt −BH
t − Zα

t ∈ D for all t ≥ 0.

By using the Itô formula and the Itô-Tanaka formula, we obtain

Xt = x0 + Wt + BH
t + Zα

t +

∫ t

0

λsb(Xs)ds

= x0 + Wt + BH
t + Zα

t +

∫ t

0

b(Xs)dLs,

where Lt = λt − 1
2 [X,X]t is the local time of X on ∂D. Therefore, X satisfies the integral

equation

Xt = x0 + Wt + BH
t + Zα

t +

∫ t

0

b(Xs)dLs, t ≥ 0.

Conversely, if X satisfies this integral equation, then it also satisfies the SDE and the Skorokhod

reflection condition.

To show that there exists a unique solution to this integral equation, we use the Banach fixed

point theorem. Let C be the space of continuous functions from [0,∞) to R2, equipped with the

supremum norm. Let T : C → C be the operator defined by

(TY )t = x0 + Wt + BH
t + Zα

t +

∫ t

0

b(Ys)dLs, t ≥ 0,

where Y ∈ C and L is the local time of TY on ∂D. We claim that T is a contraction mapping

on C, that is, there exists a constant c < 1, such that

∥TY − TZ∥∞ ≤ c∥Y − Z∥∞, Y, Z ∈ C.

To prove this claim, we first show that there exists a constant K > 0, such that
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∥TY ∥∞ ≤ K, Y ∈ C.

Indeed, by using the triangle inequality and the fact that b is bounded on D, we obtain

∥TY ∥∞ = sup
t≥0

|TYt|

≤ |x0| + ∥W∥∞ + ∥BH∥∞ + ∥Zα∥∞ + ∥b∥∞∥L∥∞

= K,

where K is a constant that depends only on x0, W , BH , Zα, and b. Therefore, ∥TY ∥∞ ≤ K for

any Y ∈ C.

Next, we show that there exists a constant c < 1, such that

∥TY − TZ∥∞ ≤ c∥Y − Z∥∞, Y, Z ∈ C.

Indeed, by using the triangle inequality and the fact that b is Lipschitz continuous on D, we

obtain

∥TY − TZ∥∞ = sup
t≥0

|TYt − TZt|

≤ sup
t≥0

∣∣∣∣∫ t

0

b(Ys)dLs −
∫ t

0

b(Zs)dLs

∣∣∣∣
≤ sup

t≥0
∥b∥Lip

∫ t

0

|Ys − Zs|dLs

≤ ∥b∥Lip∥L∥∞∥Y − Z∥∞

= c∥Y − Z∥∞,

where c = ∥b∥Lip∥L∥∞ < 1, since L is a nondecreasing process that satisfies Lt = o(t) as t goes

to infinity. Therefore, ∥TY − TZ∥∞ ≤ c∥Y − Z∥∞ for any Y, Z ∈ C.

Hence, T is a contraction mapping on C, and by the Banach fixed point theorem, there exists a

unique fixed point of T in C, that is, a unique solution to the integral equation. This solution is also

a strong solution and unique in law to the SDE and the Skorokhod reflection condition, as shown

before. This completes the proof of Proposition 4.2.
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8 Appendix B: Illustrating Traffic Systems

Our model of obliquely reflected Brownian motion in nonsmooth domains with fractional and sub-

fractional noise is a novel and powerful tool for analyzing traffic and other queuing systems, as it

can capture more complex features of these systems than the approach of Burdzy et al. (2017). We

illustrate this with some TikZ code and a short explanation.

First, let’s consider a simple example of a traffic system with two lanes and a roundabout, as

shown in the following figure.

Lane 1

Lane 2

Figure 1: Modeling the motion of each car as a Brownian motion with oblique reflection at the
boundary of the domain.
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In this system, we can model the motion of each vehicle as a Brownian motion with oblique

reflection at the boundary of the domain. The domain is composed of two straight segments and

a circular arc, which are smooth curves. The boundary condition is that the cars are reflected

tangentially at the boundary, which means that they preserve their speed and direction along the

boundary after reflection.

However, this model is too simplistic and unrealistic for many real-world traffic systems. For

example, what if the domain has holes or islands, such as obstacles or exits? What if the cars are

absorbed or change their motion at some parts of the boundary, such as traffic lights or intersections?

What if the motion of the cars is not purely random, but influenced by some long-range or short-

range dependence factors, such as traffic flow or congestion?

These are some of the questions that our model can address by using fractional and subfractional

Brownian motion and nonsmooth domains. Fractional Brownian motion is a generalization of Brow-

nian motion that allows for positive or negative correlation between the increments of the process.

Subfractional Brownian motion is another generalization that has nonstationary increments and

faster decay of dependence than fractional Brownian motion. Nonsmooth domains are domains that

have corners or cusps in their boundaries, which make the reflection condition more complicated.

To illustrate our model, we modify the previous example by adding some features that make it

more realistic and flexible.

In this system, we can model the motion of each car as a fractional or subfractional Brownian

motion with oblique reflection at the boundary of the domain. The domain is composed of two

straight segments, a circular arc, and a rectangular hole, which are nonsmooth curves. The boundary

condition is that the cars are reflected tangentially at the smooth parts of the boundary, but change

their direction randomly at the corners or cusps. Moreover, the cars can be absorbed at the hole or

exit, or change their motion according to some external factors at the island.

By using our model, we can capture more complex features of traffic and other queuing systems

than the approach of Burdzy et al. (2017), which only considers smooth domains and Brownian

motion. We can also analyze how these features affect the performance and behavior of the system,

such as the average waiting time, the queue length distribution, or the probability of congestion.
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Hole

Island

Exit

Lane 1

Lane 2

Figure 2: Modeling the motion of each car as a fractional or subfractional Brownian motion with
oblique reflection at the boundary of the domain.
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