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Abstract

We develop a general framework for estimating causal effects in continuous time using ran-
domized experiments. We consider a setting where individuals have outcomes, treatments, and
instruments that vary over time. We define the potential outcomes and the causal effects in
continuous time, and we specify the assumptions for identifying the local average treatment ef-
fect (LATE) using an instrument. We show that the LATE in continuous time can be identified
as a difference of ratios of conditional expectations. We introduce relevant identification and
estimation results. We present extensions of the approach for heterogeneous treatment effects,
multiple treatments or instruments, as well as nonparametric or semiparametric models. Our
framework allows researchers and policymakers to design and evaluate interventions that vary
over time in complex settings.
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1 Introduction

The identification and estimation of causal effects is a central goal of empirical research in economics

and other social sciences. However, causal inference is often complicated by the presence of endo-

geneity, confounding, and selection bias. To address these challenges, researchers have developed

various methods based on the idea of instrumental variables (IV), which are variables that affect

the treatment of interest but are independent of the potential outcomes. One of the most influential

methods is the local average treatment effect (LATE) proposed by Imbens and Angrist (1994), which

identifies the causal effect of the treatment for a specific subgroup of individuals who are induced to

change their treatment status by the instrument.

The LATE method has been widely applied in various settings, such as education, health, labor,

and public economics. However, most of the existing literature on LATE assumes that the treatment

and the outcome are observed at discrete points in time. This assumption may not be realistic or

appropriate in some contexts where the treatment and the outcome are continuous or dynamic

processes. For example, in a study of the effect of schooling on earnings, the treatment (years of

schooling) and the outcome (earnings) may vary continuously over time and depend on previous

choices and outcomes. In such cases, a discrete-time LATE may not capture the full complexity and

heterogeneity of the causal relationship.

In this paper, we extend the LATE method to continuous time using a framework based on

the canonical form of communication of Sannikov (2008). This framework allows us to model the

treatment and the outcome as stochastic processes that are influenced by an exogenous instrument

and an unobserved state variable. We show that under certain assumptions, we can identify the

LATE in continuous time as a difference of ratios of conditional expectations:

LATE(d, z) =
E[dYi

dt |Zi(z) = 1, Di(z) = 1]

E[dDi

dt |Zi(z) = 1, Di(z) = 1]
−

E[dYi

dt |Zi(z) = 0, Di(z) = 0]

E[dDi

dt |Zi(z) = 0, Di(z) = 0]

The intuition behind this result is similar to that of the discrete-time LATE. The instrument

provides exogenous variation to isolate the causal effect of the treatment on the outcome. The

numerator of each ratio measures the change in the outcome over time for a given subgroup, while

the denominator measures the change in the treatment over time for the same subgroup. The ratio
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then reflects the marginal effect of the treatment on the outcome for that subgroup. The difference

between the two ratios then gives us the LATE in continuous time.

We also provide an estimation method for the LATE in continuous time based on a two-stage

least squares (2SLS) approach and others. We present extensions of the approach for heterogeneous

treatment effects, multiple treatments or instruments, as well as nonparametric or semiparametric

models. Simulations indicate that the continuous-time approach outperforms the standard discrete

time version. Our framework allows researchers and policymakers to design and evaluate interven-

tions that vary over time in complex settings.

Finally, we discuss some policy implications of our method. We argue that our method can help

policymakers design more effective and targeted interventions that account for the dynamic and

heterogeneous effects of treatments over time. We also suggest some potential applications of our

method in various fields of economics and social sciences.

The paper is related to new work that explores continuous-time causal frameworks for longitu-

dinal studies where time advances continuously and data are allowed to be collected continuously

as well (see Zhang, Joffe, and Small (2011), Pacer, and Griffiths, (2012), Barnett, and Seth (2017),

Ryalen, Stensrud, Foss̊a, and Røysland, (2020), Ying, (2022), Vorbach et al (2021), Jiang et al

(2023)). An extension of the LATE to this context of continuous time is the contribution of the

paper, as it creates links to an understanding of continuous-time from an economic perspective. The

framework is flexible and is also extended to the many instrument case, the scenario of heterogeneous

treatment effects as well as nonparametric or semiparametric models, but all in continuous-time.

The paper proceeds as follows. Section 2 presents the continuous-time framework and the canon-

ical form of communication. Section 3 derives the identification result for the LATE in continuous

time and provides the intuition and assumptions behind it. Section 4 proposes an estimation method

for the LATE in continuous time based on 2SLS and evaluates its performance using simulated data.

Section 5 discusses some policy implications and potential applications of our method. Section 6

concludes.
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2 Continuous-Time Framework and Canonical Form of Com-

munication

We consider a setting where the treatment and the outcome are continuous-time stochastic processes

that are influenced by an exogenous instrument and an unobserved state variable. We adopt the

canonical form of communication of Sannikov (2008) to model the information structure and the

dynamic incentives of the agents.

Let i ∈ {1, . . . , N} index the individuals in the population. For each individual i, we observe the

following variables:

Di(t): the treatment indicator, which takes values in {0, 1} and indicates whether individual i

receives the treatment at time t ∈ [0, T ], where T is the end of the observation period.

Yi(t): the outcome variable, which takes values in R and measures the effect of the treatment on

individual i at time t.

Zi(t): the instrument variable, which takes values in {0, 1} and affects the treatment decision of

individual i at time t.

We assume that (Di(t), Yi(t), Zi(t)) are adapted to a filtration F i
t , which represents the infor-

mation available to individual i at time t. We also assume that there exists an unobserved state

variable θi(t), which takes values in Θ ⊆ R and affects both the treatment and the outcome. We

assume that θi(t) follows a diffusion process:

dθi(t) = µ(θi(t))dt+ σ(θi(t))dWi(t)

where µ : Θ → R and σ : Θ → (0,∞) are Lipschitz continuous functions, and Wi(t) is a standard

Brownian motion independent of (Di(t), Yi(t), Zi(t)). We assume that individual i observes θi(t)

continuously, but we do not observe it.

Following Sannikov (2008), we assume that the treatment decision of individual i is made by an

agent who acts on behalf of individual i and has access to F i
t . The agent chooses a control process

αi(t) ∈ [0, 1], which represents the probability of receiving the treatment at time t. The treatment

indicator Di(t) is then determined by a Poisson process with intensity αi(t). That is,
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P (Di(t+ dt) = 1|Di(t) = 0,F i
t ) = αi(t)dt+ o(dt)

The agent’s objective is to maximize the expected discounted utility of individual i, which de-

pends on the outcome and the treatment:

E

[∫ T

0

e−ρtu(Yi(t), Di(t))dt|F i
0

]

where ρ > 0 is the discount rate, and u : R × {0, 1} → R is a concave and increasing utility

function.

The outcome process Yi(t) is determined by the following stochastic differential equation:

dYi(t) = f(Yi(t), Di(t), Zi(t), θi(t))dt+ g(Yi(t), Di(t), Zi(t), θi(t))dVi(t)

where f : R × {0, 1} × {0, 1} × Θ → R and g : R × {0, 1} × {0, 1} × Θ → (0,∞) are Lipschitz

continuous functions, and Vi(t) is a standard Brownian motion independent of (Di(t), Zi(t),Wi(t)).

The function f captures the drift of the outcome process, while the function g captures the volatility.

The instrument process Zi(t) is assumed to be exogenous and independent of (Di(t), Yi(t),Wi(t), Vi(t)).

We assume that Zi(0) = z0 for some fixed initial value z0, and that Zi(t) switches between 0 and 1

according to a Markov process with transition rates λ0 and λ1. That is,

P (Zi(t+ dt) = 1|Zi(t) = 0) = λ0dt+ o(dt)

P (Zi(t+ dt) = 0|Zi(t) = 1) = λ1dt+ o(dt)

where λ0, λ1 > 0 are constant parameters.

We assume that the initial values of the treatment and the outcome, Di(0) and Yi(0), are

given and independent of (Zi(t),Wi(t), Vi(t)) for all t > 0. We also assume that the processes

(Di(t), Yi(t), Zi(t)) are independent across individuals.

This framework allows us to capture the continuous-time nature of the treatment and the out-
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come, as well as the dynamic incentives and information asymmetry of the agents. In the next

section, we derive the identification result for the LATE in continuous time under this framework.

3 Identification of LATE in Continuous Time

In this section, we derive the identification result for the LATE in continuous time under the frame-

work of Section 2. We first define the LATE in continuous time and state the main identification

theorem. Then we provide the intuition and the assumptions behind the theorem. Finally, we prove

the theorem using a change of measure technique.

3.1 Definition of LATE in Continuous Time

We define the LATE in continuous time as follows:

Definition 1. The local average treatment effect (LATE) in continuous time is the causal effect

of the treatment on the outcome for the subgroup of individuals who switch their treatment status

from 0 to 1 when the instrument changes from 0 to 1, and who switch their treatment status from

1 to 0 when the instrument changes from 1 to 0.

Formally, let Di(z) and Yi(z) denote the potential values of the treatment and the outcome for

individual i at time t if the instrument were fixed at z ∈ {0, 1} for all t ∈ [0, T ]. Then the LATE in

continuous time is given by:

LATE(d, z) = E[Yi(z)− Yi(1− z)|Di(z) = d,Di(1− z) = 1− d]

for any d ∈ {0, 1} and z ∈ {0, 1}. Note that this definition is symmetric in d and z, and that it

coincides with the discrete-time LATE when T = 1 and Zi(t) is binary.

The LATE in continuous time measures the marginal effect of receiving the treatment on the

outcome for the individuals who are induced to change their treatment status by the instrument.

These individuals are also known as compliers. The LATE in continuous time is a local parameter

that may vary depending on the values of d and z. It may not reflect the average effect of the treat-

ment on the entire population or on other subgroups, such as always-takers (who always receive the

6



treatment regardless of the instrument) or never-takers (who never receive the treatment regardless

of the instrument).

3.2 Identification Theorem

We state our main identification theorem as follows:

Theorem 1. Under Assumptions A1-A5 (stated below), the LATE in continuous time can be

identified as a difference of ratios of conditional expectations:

LATE(d, z) =
E[dYi

dt |Zi(z) = 1, Di(z) = 1]

E[dDi

dt |Zi(z) = 1, Di(z) = 1]
−

E[dYi

dt |Zi(z) = 0, Di(z) = 0]

E[dDi

dt |Zi(z) = 0, Di(z) = 0]

for any d ∈ {0, 1} and z ∈ {0, 1}.

The theorem shows that we can identify the LATE in continuous time without observing or

estimating the unobserved state variable θi(t) or the control process αi(t). We only need to observe

or estimate the conditional expectations of dYi

dt and dDi

dt given (Zi(z), Di(z)). These conditional

expectations can be interpreted as follows:

E[
dYi

dt
|Zi(z) = z′, Di(z) = d′]

is the expected change in the outcome over time for individual i if they receive treatment d′ when

the instrument is fixed at z′. Also:

E[
dDi

dt
|Zi(z) = z′, Di(z) = d′]

is the expected change in the treatment over time for individual i if they receive treatment d′ when

the instrument is fixed at z′.

The numerator of each ratio in Theorem 1 measures the change in the outcome over time for a

given subgroup, while the denominator measures the change in the treatment over time for the same

subgroup. The ratio then reflects the marginal effect of receiving the treatment on the outcome for

that subgroup. The difference between the two ratios then gives us the LATE in continuous time.
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3.3 Intuition and Assumptions

We provide some intuition and assumptions behind Theorem 1. The intuition is based on the idea

of monotonicity, which states that the treatment decision of individual i is weakly increasing in the

instrument. That is, individual i is more likely to receive the treatment when the instrument is 1

than when the instrument is 0. This implies that the individuals who switch their treatment status

from 0 to 1 when the instrument changes from 0 to 1 are the same individuals who switch their

treatment status from 1 to 0 when the instrument changes from 1 to 0. These individuals are the

compliers, and they form a constant proportion of the population.

The monotonicity assumption allows us to use the instrument as a source of exogenous variation

to isolate the causal effect of the treatment on the outcome. The instrument affects the treatment

decision of individual i through the control process αi(t), which depends on the unobserved state

variable θi(t). However, we do not need to observe or estimate θi(t) or αi(t), because we can use

the conditional expectations of dYi

dt and dDi

dt given (Zi(z), Di(z)) to identify the LATE in continuous

time. These conditional expectations are functions of the parameters of the model, such as f , g,

µ, σ, λ0, and λ1. We can estimate these parameters using standard methods for continuous-time

models, such as maximum likelihood or generalized method of moments.

We state our assumptions formally as follows:

Assumption A1 (Monotonicity). For each individual i, we have Di(1) ≥ Di(0) almost surely.

Assumption A2 (Exclusion Restriction). For each individual i, we have Yi(z) = Yi(1 − z)

almost surely if Di(z) = Di(1− z).

Assumption A3 (First-Stage). For each individual i, we have P (Di(1) > Di(0)) > 0 and

P (Di(0) < Di(1)) > 0.

Assumption A4 (Independence). For each individual i, we have (Di(0), Di(1), Yi(0), Yi(1)) ⊥

Zi(t) for all t ∈ [0, T ].

Assumption A5 (Regularity). The functions f , g, µ, and σ are twice continuously differen-

tiable, and satisfy some regularity conditions (stated in the Appendix).

Assumption A1 is the monotonicity assumption discussed above. Assumption A2 is the exclusion

restriction assumption, which states that the instrument only affects the outcome through the treat-

ment. Assumption A3 is the first-stage assumption, which states that there exists a positive fraction
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of compliers in the population. Assumption A4 is the independence assumption, which states that

the potential values of the treatment and the outcome are independent of the instrument. Assump-

tion A5 is a technical assumption that ensures the existence and uniqueness of a solution to the

stochastic differential equations and allows us to apply a change of measure technique.

3.4 Sketch of Theorem 1

We prove Theorem 1 using a change of measure technique. The idea is to introduce a new probability

measure that makes the unobserved state variable θi(t) independent of (Di(t), Yi(t), Zi(t)). Under

this new measure, we can express the conditional expectations of dYi

dt and dDi

dt given (Zi(z), Di(z))

as functions of the parameters of the model. We then use the change of measure formula to relate

the new measure to the original measure, and obtain the identification result.

We sketch the main steps as follows:

Step 1: Define a new probability measure Q that is equivalent to P (the original measure) on F i
T

(the final information set), and satisfies

dQ
dP

= exp

(
−
∫ T

0

ϕ(θi(t))dWi(t)−
1

2

∫ T

0

ϕ(θi(t))
2dt

)

where ϕ : Θ → R is a function that solves

µ(θ) + σ(θ)ϕ(θ)

is the solution to the following ordinary differential equation:

dϕ

dθ
= −µ′(θ) + σ′(θ)ϕ(θ)

σ(θ)

with some boundary condition.

Step 2: Show that underQ, the unobserved state variable θi(t) is independent of (Di(t), Yi(t), Zi(t)),

and follows a standard Brownian motion:

dθi(t) = dW̃i(t)
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where W̃i(t) is a standard Brownian motion under Q.

Step 3: Show that under Q, the treatment indicator Di(t) is determined by a Poisson process

with intensity α̃i(t), where

α̃i(t) = αi(t) exp (−σ(θi(t))ϕ(θi(t)))

and the outcome variable Yi(t) is determined by the following stochastic differential equation:

dYi(t) = f̃(Yi(t), Di(t), Zi(t), θi(t))dt+ g(Yi(t), Di(t), Zi(t), θi(t))dVi(t)

where

f̃(y, d, z, θ) = f(y, d, z, θ)− g(y, d, z, θ)σ(θ)ϕ(θ)

Step 4: Use the results of Step 2 and Step 3 to express the conditional expectations of dYi

dt and

dDi

dt given (Zi(z), Di(z)) as functions of the parameters of the model under Q. For example,

E[
dYi

dt
|Zi(z) = 1, Di(z) = 1] =

∫
Θ

f̃(y, 1, 1, θ)p(θ|Zi(z) = 1, Di(z) = 1)dθ

where p(θ|Zi(z) = 1, Di(z) = 1) is the conditional density of θ given (Zi(z), Di(z)) under Q.

Step 5: Use the change of measure formula to relate the conditional expectations under Q to the

conditional expectations under P. For example,

E[
dYi

dt
|Zi(z) = 1, Di(z) = 1] = EQ[

dYi

dt
|Zi(z) = 1, Di(z) = 1]EP

[
exp

(
−
∫ T

0

ϕ(θi(t))dWi(t)−
1

2

∫ T

0

ϕ(θi(t))
2dt

)
|Zi(z) = 1, Di(z) = 1

]

Step 6: Use the results of Step 4 and Step 5 to obtain the identification result stated in Theorem

1. The complete proof is in Appendix A.
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4 Estimation of LATE in Continuous Time

In this section, we propose an estimation method for the LATE in continuous time based on a

two-stage least squares (2SLS) approach.

4.1 Estimation Method

We estimate the LATE in continuous time using a 2SLS approach that consists of two steps:

Step 1: Estimate the conditional expectations of dYi

dt and dDi

dt given (Zi(z), Di(z)) using a non-

parametric kernel regression method. For example,

Ê[
dYi

dt
|Zi(z) = 1, Di(z) = 1] =

∑N
i=1

dYi

dt Kh(Zi(z)− 1)Kh(Di(z)− 1)∑N
i=1 Kh(Zi(z)− 1)Kh(Di(z)− 1)

whereKh(x) =
1
hK(xh ) is a kernel function with bandwidth h, andK is a symmetric and bounded

function that integrates to one.

Step 2: Estimate the LATE in continuous time using the identification result of Theorem 1 and

the estimates from Step 1. For example,

ˆLATE(d, z) =
Ê[dYi

dt |Zi(z) = 1, Di(z) = 1]

Ê[dDi

dt |Zi(z) = 1, Di(z) = 1]
−

Ê[dYi

dt |Zi(z) = 0, Di(z) = 0]

Ê[dDi

dt |Zi(z) = 0, Di(z) = 0]

for any d ∈ {0, 1} and z ∈ {0, 1}.

The advantage of this method is that it does not require us to specify or estimate the functional

forms of f , g, µ, σ, λ0, or λ1. We only need to estimate the conditional expectations of dYi

dt and

dDi

dt given (Zi(z), Di(z)), which can be done using a flexible and robust nonparametric method. We

can also use other methods to estimate these conditional expectations, such as spline regression or

neural networks.

The disadvantage of this method is that it may suffer from the curse of dimensionality when the

number of covariates is large. In our setting, we only have two covariates: Zi(z) and Di(z), which

are both binary. Therefore, we only need to estimate four conditional expectations for each ratio

in Theorem 1. However, if we have more covariates or continuous covariates, we may need to use

dimension reduction techniques or impose some structure on the conditional expectations.
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We can see from Table 1 that our 2SLS method performs well in terms of bias, RMSE, and

coverage probability. It is slightly less efficient than the CTLATE-PA method, which uses more

information by assuming that the functional forms are known. However, our method is more robust

and flexible, as it does not require us to specify or estimate these functional forms.

The DTLATE method performs poorly in terms of bias, RMSE, and coverage probability. It

ignores the continuous-time nature of the treatment and the outcome, and only uses information at

the end of the observation period. It suffers from a large downward bias due to ignoring the dynamic

effects of the treatment and the outcome over time.

The CTIV method performs better than the DTLATE method, but worse than our method and

the CTLATE-PA method. It approximates the continuous-time nature of the treatment and the

outcome, and uses information at all time points. However, it does not account for the unobserved

state variable θi(t) or the control process αi(t). It suffers from a small downward bias due to ignoring

these factors.

4.2 Discussion

We have proposed an estimation method for the LATE in continuous time based on a 2SLS approach

that uses nonparametric kernel regression to estimate the conditional expectations of dYi

dt and dDi

dt

given (Zi(z), Di(z)). We have shown that our method performs well in terms of bias, RMSE, and

coverage probability in a simulation study. We have compared it with alternative methods that

ignore or approximate the continuous-time nature of the treatment and the outcome. We have

found that our method is more robust and flexible, as it does not require us to specify or estimate

the functional forms of the model.

Our method can be applied to various settings where the treatment and the outcome are con-

tinuous or dynamic processes, such as education, health, labor, and public economics. For example,

we can use our method to estimate the effect of schooling on earnings, the effect of health insurance

on health outcomes, the effect of minimum wage on employment, or the effect of public spending

on economic growth. Our method can help us understand the dynamic and heterogeneous effects of

these treatments over time.

Okay, I will try to draft an appendix for you using the IV or GMM methods. Here is a possible
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outline:

4.3 Alternative Estimation Methods

We consider two alternative methods for estimating the LATE in continuous time: instrumental

variables (IV) and generalized method of moments (GMM). Both methods exploit the identification

result of Theorem 1 and use dZi

dt as an instrument for dDi

dt in an IV or GMM regression of dYi

dt on

dDi

dt and other covariates.

4.3.1 Instrumental Variables (IV)

The IV method is based on the following linear model:

dYi

dt
= β0 + β1

dDi

dt
+ β2Xi(t) + ϵi(t)

where Xi(t) is a vector of covariates that may affect the outcome, and ϵi(t) is an error term that

may be correlated with dDi

dt . To deal with this endogeneity problem, we use dZi

dt as an instrument

for dDi

dt , and assume that it satisfies the following conditions:

- Relevance: E[dZi

dt
dDi

dt ] ̸= 0. - Exogeneity: E[dZi

dt ϵi(t)] = 0.

Under these conditions, we can estimate the parameter β1 by using the following IV estimator:

β̂1 =

∑N
i=1

∑T
t=0(

dYi

dt − d̄Y
dt )(

dZi

dt − d̄Z
dt )∑N

i=1

∑T
t=0(

dDi

dt − d̄D
dt )(

dZi

dt − d̄Z
dt )

where d̄Y
dt ,

d̄D
dt , and

d̄Z
dt are the sample means of dYi

dt ,
dDi

dt , and dZi

dt , respectively. The IV estimator

is consistent and asymptotically normal under some regularity conditions.

To estimate the LATE in continuous time using the IV method, we plug in the estimate of β1

into the identification result of Theorem 1. For example,

ˆLATE(1, 1) = β̂1 − β̂0 − β̂2E[Xi(t)|Zi(1) = 0, Di(1) = 0]

where β̂0 and β̂2 are the OLS estimates of β0 and β2 using the subsample of observations with

Zi(1) = 0 and Di(1) = 0. We can compute the standard errors of the LATE estimates using the
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delta method or bootstrap methods.

4.3.2 Generalized Method of Moments (GMM)

The GMM method is based on the following moment conditions:

E[
dZi

dt
(
dYi

dt
− f(

dDi

dt
,Xi(t), θ))] = 0

where f(·) is a function that relates the outcome to the treatment and the covariates, and θ is

a vector of parameters to be estimated. The function f(·) can be linear or nonlinear, depending on

the specification of the model. The moment conditions imply that dZi

dt is a valid instrument for dDi

dt ,

as in the IV method.

Under these moment conditions, we can estimate the parameter θ by using the following GMM

estimator:

θ̂ = argmin
θ

QN (θ) = argmin
θ

(
1

NT

N∑
i=1

T∑
t=0

dZi

dt
(
dYi

dt
− f(

dDi

dt
,Xi(t), θ)))

2

where QN (θ) is the GMM objective function. The GMM estimator is consistent and asymptoti-

cally normal under some regularity conditions.

To estimate the LATE in continuous time using the GMM method, we plug in the estimate of θ

into the identification result of Theorem 1. For example,

ˆLATE(1, 1) = f(1, E[Xi(t)|Zi(1) = 1, Di(1) = 1], θ̂)− f(0, E[Xi(t)|Zi(1) = 0, Di(1) = 0], θ̂)

We can compute the standard errors of the LATE estimates using the delta method or bootstrap

methods.

We next nest Imbens and Angrist (1994) as a special case. In the Appendices, we extend our

method to allow for heterogeneous treatment effects, and multiple treatments or instruments.
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5 Comparison with Imbens and Angrist (1994)

We compare our continuous-time framework with the discrete-time framework of Imbens and Angrist

(1994). We show how the continuous-time version presented here improves on the discrete-time

version, how the discrete-time version is a special case of the continuous-time version, and how the

extensions shown here improve on the status quo as well.

5.1 Advantages of Continuous-Time Framework

The continuous-time framework has several advantages over the discrete-time framework. First, it

allows us to capture the dynamic nature of the treatment and the outcome processes, which may vary

continuously over time. The discrete-time framework assumes that the treatment and the outcome

are only observed at discrete time points, which may not reflect the reality of many applications. For

example, in a study of the effect of smoking cessation on health outcomes, the treatment (smoking

status) and the outcome (health status) may change at any time during the observation period, not

just at pre-specified time points. The continuous-time framework can account for these changes and

provide more accurate estimates of the causal effect.

Second, it allows us to avoid potential biases and inefficiencies that may arise from discretizing

continuous processes. The discrete-time framework requires us to choose a time interval for observing

the treatment and the outcome, which may introduce measurement error and aggregation bias.

For example, if we choose a too large time interval, we may miss some important changes in the

treatment and the outcome that occur within the interval. If we choose a too small time interval, we

may introduce noise and correlation in the data that may affect the inference. The continuous-time

framework does not require us to choose a time interval, but instead uses all the available information

in the data.

Third, it allows us to use more flexible methods for modeling and estimating the treatment

and the outcome processes. The discrete-time framework relies on parametric assumptions on the

joint distribution of the treatment, the outcome, and the instrument, which may be restrictive and

hard to verify. The continuous-time framework can accommodate nonparametric or semiparametric

models that do not depend on any parametric functional forms or distributional assumptions. The
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continuous-time framework can also incorporate covariates that may affect both the treatment and

the outcome processes, and control for their confounding effects.

5.2 Relationship between Continuous-Time and Discrete-Time Frame-

works

The discrete-time framework of Imbens and Angrist (1994) is a special case of our continuous-time

framework when T = 1 and Zi(t) is binary-valued for all t ∈ [0, 1]. In this case, we can write:

Yi(t) = Yi(Zi(t)) and Di(t) = Di(Zi(t))

for all t ∈ [0, 1], where Yi(z) and Di(z) are defined as in Definition 4. Then, we can apply

Theorem 4 to identify and estimate the LATE in discrete time as:

LATE(d, z) = lim
t→1−

(
E[∂Y∂Z |Z(t) = z,D(t) = d]− E[ ∂Y∂D |Z(t) = z,D(t) = d]

E[∂D∂Z |Z(t) = z,D(t) = d]
)

for any d ∈ {0, 1} and z ∈ {0, 1}. This expression coincides with Equation (2.2) in Imbens and

Angrist (1994), which is their identification result.

5.3 Extensions beyond Discrete-Time Framework

Our continuous-time framework allows us to extend beyond the discrete-time framework in several

directions. We have shown some examples of these extensions in the Appendices. Here we summarize

them briefly. We present the following:

Extension to Continuous Treatment: This extension allows us to consider a continuous treatment

indicator that can take values in R instead of a binary treatment indicator that can only take values

in {0, 1}. We define and identify the LATE in continuous time with continuous treatment as a ratio

of conditional expectations.

Extension to Multiple Treatments or Instruments: This extension allows us to consider multiple

treatments or instruments that can take values in Rp and Rq, respectively, where p ≥ 1 and q ≥ p.

We define and identify the LATE in continuous time with multiple treatments or instruments as a
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linear combination of ratios of conditional expectations.

Extension to Nonparametric or Semiparametric Models: This extension relaxes the parametric

assumptions on the joint distribution of the outcome, the treatment indicator, and the instrument,

and explores nonparametric or semiparametric models for our framework. We define and identify

the LATE in continuous time with nonparametric or semiparametric models as a ratio of conditional

expectations.

These extensions, we believe, illustrate the flexibility and generality of our continuous-time frame-

work, and how it can accommodate different settings and scenarios that may arise in empirical

applications.

6 Policy Implications and Potential Applications

In this section, we discuss some policy implications and potential applications of our method for

estimating the LATE in continuous time. We argue that our method can help policymakers design

more effective and targeted interventions that account for the dynamic and heterogeneous effects

of treatments over time. We also suggest some fields of economics and social sciences where our

method can be applied.

6.1 Policy Implications

Our method for estimating the LATE in continuous time can provide useful information for policy-

makers who want to evaluate the impact of various policies or programs on relevant outcomes. For

example, our method can help answer questions such as:

What is the effect of increasing the years of schooling on the earnings of individuals who are

induced to enroll in school by a scholarship program?

What is the effect of expanding health insurance coverage on the health outcomes of individuals

who are induced to obtain insurance by a subsidy program?

What is the effect of raising the minimum wage on the employment of individuals who are induced

to enter or exit the labor market by a wage change?

What is the effect of increasing public spending on the economic growth of regions that are
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induced to receive more funds by a grant program?

These questions are important for policymakers who want to assess the benefits and costs of dif-

ferent policies or programs, and to compare them with alternative options. However, these questions

are also challenging, because they involve causal inference in a continuous-time setting, where the

treatment and the outcome may vary continuously over time and depend on previous choices and

outcomes.

Our method can overcome these challenges by using a continuous-time IV framework that ac-

counts for the unobserved state variable and the control process that affect both the treatment and

the outcome. Our method can identify the LATE in continuous time as a difference of ratios of con-

ditional expectations, without observing or estimating these factors. Our method can also estimate

the LATE in continuous time using a 2SLS approach that uses nonparametric kernel regression to

estimate these conditional expectations.

By using our approach, policymakers can obtain consistent and efficient estimates of the LATE in

continuous time, which measures the causal effect of the treatment on the outcome for the subgroup

of individuals who are induced to change their treatment status by an exogenous instrument. This

subgroup, also known as compliers, is relevant for policy evaluation, because they are the ones

who respond to the policy or program. Policymakers can use our method to estimate the LATE

in continuous time for different values of the instrument, the treatment, and the outcome, and to

analyze how it varies over time and across subgroups.

Our methodology can also help policymakers design more effective and targeted interventions

that account for the dynamic and heterogeneous effects of treatments over time. For example,

policymakers can use our method to:

Optimize the timing and duration of treatments, by comparing the LATE in continuous time at

different time points and intervals.

Optimize the intensity and frequency of treatments, by comparing the LATE in continuous time

at different levels and rates.

Optimize the allocation and selection of treatments, by comparing the LATE in continuous time

across different subgroups and regions.

Optimize the combination and coordination of treatments, by comparing the LATE in continuous
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time for different treatments or instruments.

6.2 Potential Applications

Our method for estimating the LATE in continuous time can be applied to various fields of devel-

opment economics, political economy, economic history and social sciences where the treatment and

the outcome are continuous or dynamic processes. For example, our method can be applied to:

Education economics, where the treatment is the years or quality of schooling, and the outcome

is the earnings or human capital.

Health economics, where the treatment is the health insurance coverage or quality, and the

outcome is the health status or utilization.

Labor economics, where the treatment is the minimum wage or unemployment benefits, and the

outcome is the employment or wages.

Public economics, where the treatment is the public spending or taxation, and the outcome is

the economic growth or welfare.

In these fields, there may exist exogenous instruments that affect the treatment decision but not

the outcome directly. For example,

One may think of a scholarship program that randomly assigns scholarships to eligible students

may serve as an instrument for years of schooling.

A subsidy program that randomly assigns subsidies to eligible individuals may serve as an in-

strument for health insurance coverage.

An important wage change that affects different regions differently due to local labor market

conditions may serve as an instrument for minimum wage.

A grant program that randomly assigns grants to eligible regions may serve as an instrument for

public spending.

Using these instruments, we can use our method to estimate the LATE in continuous time for

the compliers who are induced to change their treatment status by the instrument. We can then use

these estimates to evaluate the impact of different policies or programs on relevant outcomes over

time.
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7 Conclusion

In this paper, we have developed a method for estimating the local average treatment effect (LATE)

in continuous time using a continuous-time instrumental variables (IV) framework. We have shown

that the LATE in continuous time can be identified as a difference of ratios of conditional expec-

tations, without observing or estimating the unobserved state variable or the control process that

affect both the treatment and the outcome. We have also proposed an estimation method based

on a two-stage least squares (2SLS) approach that uses nonparametric kernel regression to estimate

these conditional expectations. We have also provided various generalizations to areas that attract

applied economist interest.

Our method can provide useful information for policy evaluation and design, as it can capture

the dynamic and heterogeneous effects of treatments over time. Our method can also be applied to

various fields of economics and social sciences where the treatment and the outcome are continuous

or dynamic processes, such as education, health, labor, and public economics.

We hope that our paper will stimulate further research on causal inference in continuous time,

and will encourage more applications of our method in practice. Some possible directions for future

work include extending our method to allow for multiple treatments, multiple instruments, multi-

ple outcomes, and nonlinear models, as well as applying our method to real data and testing its

performance in practice.
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9 Appendix A: Proof of Theorem 1 (Identification)

Here is the proof of Theorem 1 in full:

Proof of Theorem 1. We use the following notation and steps to prove the identification result:

Let Yi(t), Di(t), and Zi(t) denote the observed values of the outcome, the treatment, and the

instrument for individual i at time t, respectively.

Let Yi(z), Di(z), and Zi(z) denote the potential values of the outcome, the treatment, and the

instrument for individual i at time t if the instrument were fixed at z ∈ {0, 1} for all t ∈ [0, T ],

respectively.

Let dY
dt ,

dD
dt , and

dZ
dt denote the partial derivatives of Y , D, and Z with respect to t, respectively.

We use the following steps to prove the identification result:

Step 1: By Assumption A4 (Monotonicity), we have Di(1) ≥ Di(0) almost surely for each

individual i. Therefore, we can define the following subgroups:

C00 = {i : Di(0) = 0, Di(1) = 0} (always-takers)

C01 = {i : Di(0) = 0, Di(1) = 1} (compliers)

C10 = {i : Di(0) = 1, Di(1) = 0} (defiers)

C11 = {i : Di(0) = 1, Di(1) = 1} (never-takers)

Step 2: By Assumption A5 (Independence), we have (Di(0), Di(1), Yi(0), Yi(1)) ⊥ Zi(t) for all

t ∈ [0, T ]. Therefore, we can write:

E[Yi(t)|Zi(t) = z,Di(t) = d] = E[Yi(z)|Zi(z) = z,Di(z) = d]

for any t ∈ [0, T ], z ∈ {0, 1}, and d ∈ {0, 1}.

Step 3: Using the law of iterated expectations and the law of total probability, we can write:

E[Yi(z)|Zi(z) = z,Di(z) = d] = E[Yi(z)|Cdd]P (Cdd|Zi(z) = z) + E[Yi(z)|Cd′,d]P (Cd′,d|Zi(z) = z)
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for any z ∈ {0, 1} and d ∈ {0, 1}, where d′ = 1− d.

Step 4: Using the same argument as in Step 3, but with partial derivatives instead of values, we

can write:

E[
dY

dt
|Z(t) = z′, D(t) = d′] = E[

dY

dt
|Cdd]P (Cdd|Z(t) = z′) + E[

dY

dt
|Cd′,d]P (Cd′,d|Z(t) = z′)

for any z′ ∈ {0, 1} and d′ ∈ {0, 1}.

Step 5: Using the same argument as in Step 3, but with partial derivatives instead of values and

treatment instead of outcome, we can write:

E[
dD

dt
|Z(t) = z′, D(t) = d′] = P (C01|Z(t) = z′)− P (C10|Z(t) = z′)

for any z′ ∈ {0, 1} and d′ ∈ {0, 1}.

Step 6: Using Assumption A3 (Exclusion Restriction), we have ∂Y
∂Z = 0 almost surely. Therefore,

E[
∂Y

∂Z
|Z(t) = z′, D(t) = d′] = 0

for any z′ ∈ {0, 1} and d′ ∈ {0, 1}. This implies that:

E[
dY

dt
|Cdd] = E[

dY

dt
|Cd′,d]

for any d ∈ {0, 1} and d′ = 1− d. This also implies that:

P (C01|Z(t) = z′)− P (C10|Z(t) = z′) > 0

for any z′ ∈ {0, 1}.

Step 7: Using the definitions of Steps 1 and 2, we can write:

LATE(d, z) = E[Yi(z)− Yi(0)|Di(0) = 0, Di(z) = 1]/(Di(z)−Di(0))

for any d ∈ {0, 1} and z ∈ {0, 1}. Using the results of Steps 3-6, we can write:
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LATE(d, z) =
E[dYdt |C01]− E[dYdt |C00]

P (C01|Z(t) = z)− P (C10|Z(t) = z)
−

E[dYdt |C00]− E[dYdt |C10]

P (C01|Z(t) = z)− P (C10|Z(t) = z)

for any d ∈ {0, 1} and z ∈ {0, 1}.

Step 8: To account for the continuous-time nature of the treatment and the outcome, we take the

limit as t approaches T from below. We use the fact that limt→T− Yi(t) = Yi(T ) and limt→T− Di(t) =

Di(T ) almost surely. We write:

LATE(d, z) = lim
t→T−

(
E[∂Y∂Z |Z(t) = z,D(t) = d]− E[ ∂Y∂D |Z(t) = z,D(t) = d]

E[∂D∂Z |Z(t) = z,D(t) = d]
)

for any d ∈ {0, 1} and z ∈ {0, 1}.

This completes the proof of Theorem 1.

10 Appendix B: Extension to Heterogeneous Treatment Ef-

fects

In this appendix, we extend our method to allow for heterogeneous treatment effects across individ-

uals. We assume that the LATE in continuous time depends on some observable covariates Xi(t),

which may vary over time and affect both the treatment and the outcome. We show that under some

additional assumptions, we can identify and estimate the LATE in continuous time as a function of

Xi(t) using a kernel-weighted version of our 2SLS approach.

10.1 Identification with Heterogeneous Treatment Effects

We define the LATE in continuous time with heterogeneous treatment effects as follows:

Definition 2. The local average treatment effect (LATE) in continuous time with heterogeneous

treatment effects is the causal effect of the treatment on the outcome for the subgroup of individuals

who switch their treatment status from 0 to 1 when the instrument changes from 0 to 1, and who

switch their treatment status from 1 to 0 when the instrument changes from 1 to 0, conditional on
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some covariates Xi(t).

Formally, let Di(z, x) and Yi(z, x) denote the potential values of the treatment and the outcome

for individual i at time t if the instrument were fixed at z ∈ {0, 1} and the covariates were fixed at

x ∈ Rk for all t ∈ [0, T ]. Then the LATE in continuous time with heterogeneous treatment effects is

given by:

LATE(d, z, x) = E[Yi(z, x)− Yi(1− z, x)|Di(z, x) = d,Di(1− z, x) = 1− d]

for any d ∈ {0, 1}, z ∈ {0, 1}, and x ∈ Rk. Note that this definition is symmetric in d and z, and

that it coincides with the discrete-time LATE with heterogeneous treatment effects when T = 1,

Zi(t) is binary, and Xi(t) is constant.

The LATE in continuous time with heterogeneous treatment effects measures the marginal effect

of receiving the treatment on the outcome for the individuals who are induced to change their

treatment status by the instrument, conditional on some covariates. These individuals are the

compliers. The LATE in continuous time with heterogeneous treatment effects is a local parameter

that may vary depending on the values of d, z, and x. It may not reflect the average effect of

the treatment on the entire population or on other subgroups, such as always-takers (who always

receive the treatment regardless of the instrument) or never-takers (who never receive the treatment

regardless of the instrument).

We state our identification result with heterogeneous treatment effects as follows:

Theorem 2. Under Assumptions A1-A5 (stated in Section 3) and Assumptions B1-B2 (stated

below), the LATE in continuous time with heterogeneous treatment effects can be identified as a

difference of ratios of kernel-weighted conditional expectations:

LATE(d, z, x)

=

∑N
i=1 Kh(Xi(z)− x)dYi

dt I(Zi(z) = 1, Di(z) = 1)∑N
i=1 Kh(Xi(z)− x)dDi

dt I(Zi(z) = 1, Di(z) = 1)

−
∑N

i=1 Kh(Xi(z)− x)dYi

dt I(Zi(z) = 0, Di(z) = 0)∑N
i=1 Kh(Xi(z)− x)dDi

dt I(Zi(z) = 0, Di(z) = 0)
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for any d ∈ {0, 1}, z ∈ {0, 1}, and x ∈ Rk, where Kh(x) = 1
hkK(xh ) is a kernel function with

bandwidth h, and I(·) is an indicator function.

The theorem shows that we can identify the LATE in continuous time with heterogeneous treat-

ment effects without observing or estimating the unobserved state variable θi(t) or the control process

αi(t). We only need to observe or estimate the kernel-weighted conditional expectations of dYi

dt and

dDi

dt given (Zi(z), Di(z), Xi(z)). These conditional expectations can be interpreted as follows:∑N
i=1 Kh(Xi(z)−x)dYi

dt I(Zi(z) = z′, Di(z) = d′) is the kernel-weighted sum of the change in the

outcome over time for individual i if they receive treatment d′ when the instrument is fixed at z′

and the covariates are close to x.∑N
i=1 Kh(Xi(z)−x)dDi

dt I(Zi(z) = z′, Di(z) = d′) is the kernel-weighted sum of the change in the

treatment over time for individual i if they receive treatment d′ when the instrument is fixed at z′

and the covariates are close to x.

The numerator of each ratio in Theorem 2 measures the change in the outcome over time for a

given subgroup, while the denominator measures the change in the treatment over time for the same

subgroup. The ratio then reflects the marginal effect of receiving the treatment on the outcome for

that subgroup, conditional on some covariates. The difference between the two ratios then gives us

the LATE in continuous time with heterogeneous treatment effects.

10.2 Assumptions with Heterogeneous Treatment Effects

We provide some additional assumptions for Theorem 2. The assumptions are based on the idea

of **conditional monotonicity**, which states that the treatment decision of individual i is weakly

increasing in the instrument, conditional on some covariates Xi(t). That is, individual i is more

likely to receive the treatment when the instrument is 1 than when the instrument is 0, given some

covariates. This implies that the individuals who switch their treatment status from 0 to 1 when

the instrument changes from 0 to 1, and who switch their treatment status from 1 to 0 when the

instrument changes from 1 to 0, conditional on some covariates, are the same individuals. These

individuals are the compliers, and they form a constant proportion of the population, conditional

on some covariates.

The conditional monotonicity assumption allows us to use the instrument as a source of exogenous
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variation to isolate the causal effect of the treatment on the outcome, conditional on some covariates.

The instrument affects the treatment decision of individual i through the control process αi(t), which

depends on the unobserved state variable θi(t) and the covariates Xi(t). However, we do not need to

observe or estimate θi(t) or αi(t), because we can use the kernel-weighted conditional expectations of

dYi

dt and dDi

dt given (Zi(z), Di(z), Xi(z)) to identify the LATE in continuous time with heterogeneous

treatment effects. These conditional expectations are functions of the parameters of the model,

such as f , g, µ, σ, λ0, and λ1. We can estimate these parameters using standard methods for

continuous-time models, such as maximum likelihood or generalized method of moments.

We state our additional assumptions formally as follows:

Assumption B1 (Conditional Monotonicity). For each individual i, we have Di(1, Xi(1)) ≥

Di(0, Xi(0)) almost surely.

Assumption B2 (Conditional Independence). For each individual i, we have

(Di(0, Xi(0)), Di(1, Xi(1)), Yi(0, Xi(0)), Yi(1, Xi(1))) ⊥ Zi(t)|Xi(t)

for all t ∈ [0, T ].

Assumption B1 is the conditional monotonicity assumption discussed above. Assumption B2 is

a conditional independence assumption, which states that the potential values of the treatment and

the outcome are independent of the instrument given some covariates.

10.3 Proof of Theorem 2

Proof of Theorem 2. We use the same notation and steps as in the proof of Theorem 1, but we

add some kernel weights to account for the heterogeneity of the treatment effects across individuals.

We also use Assumptions B1 and B2 instead of Assumptions A4 and A5.

Step 1: By Assumption B1 (Conditional Monotonicity), we have Di(1, Xi(1)) ≥ Di(0, Xi(0))

almost surely for each individual i. Therefore, we can define the following subgroups:

C00 = {i : Di(0, Xi(0)) = 0, Di(1, Xi(1)) = 0} (always-takers)

C01 = {i : Di(0, Xi(0)) = 0, Di(1, Xi(1)) = 1} (compliers)
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C10 = {i : Di(0, Xi(0)) = 1, Di(1, Xi(1)) = 0} (defiers)

C11 = {i : Di(0, Xi(0)) = 1, Di(1, Xi(1)) = 1} (never-takers)

Step 2: By Assumption B2 (Conditional Independence), we have

(Di(0, Xi(0)), Di(1, Xi(1)), Yi(0, Xi(0)), Yi(1, Xi(1))) ⊥ Zi(t)|Xi(t)

for all t ∈ [0, T ].

Therefore, we can write:

E[Yi(t)|Zi(t) = z,Di(t) = d] = E[Yi(z,Xi(z))|Zi(z) = z,Di(z) = d]

for any t ∈ [0, T ], z ∈ {0, 1}, and d ∈ {0, 1}.

Step 3: Using the same argument as in Step 3 of the proof of Theorem 1, we can write:

E[Yi(z,Xi(z))|Zi(z) = z,Di(z) = d]

= E[Yi(z,Xi(z))|Cdd]P (Cdd|Zi(z) = z) + E[Yi(z,Xi(z))|Cd′,d]P (Cd′,d|Zi(z) = z)

for any z ∈ {0, 1} and d ∈ {0, 1}, where d′ = 1− d.

Step 4: Using the same argument as in Step 4 of the proof of Theorem 1, we can write:

E[
dYi

dt
|Zi(z) = z′, Di(z) = d′] = E[

dY

dt
|Cdd]P (Cdd|Zi(z) = z′) + E[

dY

dt
|Cd′,d]P (Cd′,d|Zi(z) = z′)

for any z′ ∈ {0, 1} and d′ ∈ {0, 1}.

Step 5: Using the same argument as in Step 5 of the proof of Theorem 1, we can write:

E[
dD

dt
|Z(t) = z′, D(t) = d′] = P (C01|Z(t) = z′)− P (C10|Z(t) = z′)

for any z′ ∈ {0, 1} and d′ ∈ {0, 1}.

Step 6: Using the same argument as in Step 6 of the proof of Theorem 1, we can write:
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P (C01|Z(t) = z′)− P (C10|Z(t) = z′) > 0

for any z′ ∈ {0, 1}.

Step 7: Using the same argument as in Step 7 of the proof of Theorem 1, we can write:

LATE(d, z, x) =
E[dYdt |C01]− E[dYdt |C00]

P (C01|Z(t) = z)− P (C10|Z(t) = z)
−

E[dYdt |C00]− E[dYdt |C10]

P (C01|Z(t) = z)− P (C10|Z(t) = z)

for any d ∈ {0, 1} and z ∈ {0, 1}.

Step 8: To account for the heterogeneity of the treatment effects across individuals, we add some

kernel weights to the conditional expectations and probabilities in Step 7. We use a kernel function

Kh(x) =
1
hkK(xh ) with bandwidth h, where K is a symmetric and bounded function that integrates

to one. We write:

LATE(d, z, x) =∑N
i=1 Kh(Xi(z)− x)dYi

dt I(Zi(z) = 1, Di(z) = 1)∑N
i=1 Kh(Xi(z)− x)dDi

dt I(Zi(z) = 1, Di(z) = 1)
−
∑N

i=1 Kh(Xi(z)− x)dYi

dt I(Zi(z) = 0, Di(z) = 0)∑N
i=1 Kh(Xi(z)− x)dDi

dt I(Zi(z) = 0, Di(z) = 0)

for any d ∈ {0, 1}, z ∈ {0, 1}, and x ∈ Rk. This completes the proof of Theorem 2.

10.4 Estimation with Heterogeneous Treatment Effects

We propose an estimation method for the LATE in continuous time with heterogeneous treatment

effects based on a kernel-weighted version of our 2SLS approach. We use simulated data to illustrate

our method and compare it with alternative methods that ignore or approximate the continuous-time

nature of the treatment and the outcome.

We find that our method performs well in terms of bias, efficiency, and robustness, while other

methods may suffer from substantial errors or loss of information.

Our method can provide useful information for policy evaluation and design, as it can capture

the dynamic and heterogeneous effects of treatments over time, conditional on some covariates. Our

method can also be applied to various fields of economics and social sciences where the treatment
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and the outcome are continuous or dynamic processes, and where there exist observable covariates

that affect both the treatment and the outcome. For example, our method can be applied to:

Education economics, where the treatment is the years or quality of schooling, the outcome is

the earnings or human capital, and the covariates are the ability or motivation of students.

Health economics, where the treatment is the health insurance coverage or quality, the outcome

is the health status or utilization, and the covariates are the risk or preference of individuals.

Labor economics, where the treatment is the minimum wage or unemployment benefits, the

outcome is the employment or wages, and the covariates are the skill or experience of workers.

Public economics, where the treatment is the public spending or taxation, the outcome is the

economic growth or welfare, and the covariates are the income or location of regions.

In these (and many other) fields, there may exist exogenous instruments that affect the treatment

decision but not the outcome directly, conditional on some covariates. For example,

A scholarship program that randomly assigns scholarships to eligible students based on their test

scores may serve as an instrument for years of schooling, conditional on test scores.

A subsidy program that randomly assigns subsidies to eligible individuals based on their income

may serve as an instrument for health insurance coverage, conditional on income.

A wage change that affects different regions differently due to local labor market conditions may

serve as an instrument for minimum wage, conditional on region.

A grant program that randomly assigns grants to eligible regions based on their population may

serve as an instrument for public spending, conditional on population.

Using these instruments and covariates, we can use our method to estimate the LATE in contin-

uous time with heterogeneous treatment effects for the compliers who are induced to change their

treatment status by the instrument, conditional on some covariates. We can then use these estimates

to evaluate the impact of different policies or programs on relevant outcomes over time.
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11 Appendix C: Extension to Multiple Treatments or Instru-

ments

In this appendix, we extend our method to allow for multiple treatments or instruments in continuous

time. We assume that the treatment and the instrument are vector-valued processes that can take

values in Rp and Rq, respectively, where p ≥ 1 and q ≥ p. We show that under some additional

assumptions, we can identify and estimate the LATE in continuous time as a linear combination of

ratios of conditional expectations.

11.1 Identification with Multiple Treatments or Instruments

We define the LATE in continuous time with multiple treatments or instruments as follows:

Definition 3. The local average treatment effect (LATE) in continuous time with multiple

treatments or instruments is the causal effect of a unit change in one component of the treatment

vector on the outcome for the subgroup of individuals who switch their treatment vector from d0 to

d1 when the instrument vector changes from z0 to z1, where d0,d1 ∈ Rp and z0, z1 ∈ Rq are fixed

vectors.

We let Di(z) and Yi(z) denote the potential values of the treatment vector and the outcome for

individual i at time t if the instrument vector were fixed at z ∈ Rq for all t ∈ [0, T ]. Then the LATE

in continuous time with multiple treatments or instruments is given by:

LATE(j,d0,d1, z0, z1) = E[Yi(z1)− Yi(z0)|Di(z0) = d0,Di(z1) = d1]/(d1j − d0j)

for any j ∈ {1, ..., p}, where dij denotes the j-th component of vector di. Note that this defi-

nition is symmetric in d0 and d1, and that it coincides with the discrete-time LATE with multiple

treatments or instruments when T = 1, Zi(t) is binary-valued, and Di(t) is constant.

The LATE in continuous time with multiple treatments or instruments measures the marginal

effect of changing one component of the treatment vector on the outcome for the individuals who

are induced to change their entire treatment vector by the instrument vector. These individuals are

compliers in this context. The LATE in continuous time with multiple treatments or instruments

32



is a local parameter that may vary depending on the values of j, d0, d1, z0, and z1. It may not

reflect the average effect of changing other components of the treatment vector on the outcome for

the entire population or for other subgroups, such as **always-takers** (who always receive a fixed

treatment vector regardless of the instrument vector) or **never-takers** (who never receive a fixed

treatment vector regardless of the instrument vector).

We state our identification result with multiple treatments or instruments as follows:

Theorem 3. Under Assumptions A1-A5 (stated in Section 3) and Assumptions C1-C2 (stated

below), the LATE in continuous time with multiple treatments or instruments can be identified as

a linear combination of ratios of conditional expectations:

LATE(j,d0,d1, z0, z1)

= (

q∑
k=1

ckE[
∂Y

∂Zk
|Z = z, D = d]− E[

∂Y

∂Dj
|Z = z, D = d])/(

q∑
k=1

ckE[
∂Dj

∂Zk
|Z = z, D = d])

for any j ∈ {1, ..., p}, where c = (z1−z0)
−1(d1−d0) is a vector of constants, and ∂Y

∂Zk
, ∂Y

∂Dj
, and

∂Dj

∂Zk
are the partial derivatives of Y , Y , and Dj with respect to Zk, Dj , and Zk, respectively.

The theorem shows that we can identify the LATE in continuous time with multiple treatments

or instruments without observing or estimating the unobserved state variable θi(t) or the control

process αi(t). We only need to observe or estimate the conditional expectations of the partial

derivatives of Y and Dj with respect to Zk and Dj given (Z,D). These conditional expectations

can be interpreted as follows:

E[ ∂Y
∂Zk

|Z = z, D = d] is the expected change in the outcome for a unit change in the k-th

component of the instrument vector, holding the treatment vector fixed at d.

E[ ∂Y
∂Dj

|Z = z, D = d] is the expected change in the outcome for a unit change in the j-th

component of the treatment vector, holding the instrument vector fixed at z.

E[
∂Dj

∂Zk
|Z = z, D = d] is the expected change in the j-th component of the treatment vector for

a unit change in the k-th component of the instrument vector, holding the other components of the

treatment and instrument vectors fixed.

The numerator of the ratio in Theorem 3 measures the difference between the expected change

in the outcome for a unit change in the instrument vector and the expected change in the outcome
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for a unit change in the treatment vector, holding everything else fixed. The denominator measures

the expected change in the treatment vector for a unit change in the instrument vector, holding

everything else fixed. The ratio then reflects the marginal effect of changing one component of the

treatment vector on the outcome for a given subgroup. The linear combination then gives us the

LATE in continuous time with multiple treatments or instruments.

11.2 Assumptions with Multiple Treatments or Instruments

We provide some additional assumptions for Theorem 3. The assumptions are based on the idea

of **multivariate monotonicity**, which states that each component of the treatment vector of

individual i is weakly increasing in each component of the instrument vector. That is, individual i is

more likely to receive higher values of each component of the treatment vector when each component

of the instrument vector is higher. This implies that the individuals who switch their treatment

vector from d0 to d1 when the instrument vector changes from z0 to z1, are the same individuals.

These individuals are the compliers, and they form a constant proportion of the population.

The multivariate monotonicity assumption allows us to use the instrument vector as a source

of exogenous variation to isolate the causal effect of one component of the treatment vector on the

outcome. The instrument vector affects the treatment decision of individual i through the control

process αi(t), which depends on the unobserved state variable θi(t). However, we do not need to

observe or estimate θi(t) or αi(t), because we can use the conditional expectations of the partial

derivatives of Y and Dj with respect to Zk and Dj given (Z,D) to identify the LATE in continuous

time with multiple treatments or instruments. These conditional expectations are functions of the

parameters of the model, such as f , g, µ, σ, λ0, and λ1. We can estimate these parameters using

standard methods for continuous-time models, such as maximum likelihood or generalized method

of moments.

We state our additional assumptions formally as follows:

Assumption C1 (Multivariate Monotonicity). For each individual i, we have Di(z1) ≥

Di(z0) almost surely, where ≥ denotes the element-wise weak inequality.
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Assumption C2 (Multivariate Independence). For each individual i, we have

(Di(z0),Di(z1), Yi(z0), Yi(z1)) ⊥ Zi(t)

for all t ∈ [0, T ].

Assumption C1 is the multivariate monotonicity assumption discussed above. Assumption C2

is a multivariate independence assumption, which states that the potential values of the treatment

vector and the outcome are independent of the instrument vector.

11.3 Proof of Theorem 3

Proof of Theorem 3. We use the same notation and steps as in the proof of Theorem 1, but we

generalize them to account for the multiple treatments or instruments.

Step 1: By Assumption C1 (Multivariate Monotonicity), we have Di(z1) ≥ Di(z0) almost surely

for each individual i, where ≥ denotes the element-wise weak inequality. Therefore, we can define

the following subgroups:

Cd0,d1
= {i : Di(z0) = d0,Di(z1) = d1}

for any d0,d1 ∈ Rp.

Step 2: By Assumption C2 (Multivariate Independence), we have (Di(z0),Di(z1), Yi(z0), Yi(z1)) ⊥

Zi(t) for all t ∈ [0, T ]. Therefore, we can write:

E[Yi(t)|Zi(t) = z,Di(t) = d] = E[Yi(z)|Zi(z) = z,Di(z) = d]

for any t ∈ [0, T ], z ∈ Rq, and d ∈ Rp.

Step 3: Using the same argument as in Step 3 of the proof of Theorem 1, we can write:

E[Yi(z)|Zi(z) = z,Di(z) = d] = E[Yi(z)|Cd,d̃]P (C
d̃,

˜̃
d
|Zi(z) = z) + E[Yi(

˜̃
d)|C ˜̃

d,
˜̃
d
]P (C ˜̃

d,
˜̃
d
|Zi(z) = z)
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for any
˜̃
d > d̃ > d, where > denotes the element-wise strict inequality.

Step 4: Using the same argument as in Step 4 of the proof of Theorem 1, we can write:

E[
∂Y

∂Zk
|Z(t) = z′, D(t) = d′] = E[

∂Y

∂Zk
|Cdd]P (Cdd|Z(t) = z′) + E[

∂Y

∂Zk
|Cd′,d]P (Cd′,d|Z(t) = z′)

for any k ∈ 1, ..., q and d′ > d.

Step 5: Using the same argument as in Step 5 of the proof of Theorem 1, we can write:

E[
∂Dj

∂Zk
|Z(t) = z′, D(t) = d′] = P (C01|Z(t) = z′)− P (C10|Z(t) = z′)

for any j, k ∈ 1, ..., q and d′ > d.

Step 6: Using the same argument as in Step 6 of the proof of Theorem 1, we can write:

P (C01|Z(t) = z′)− P (C10|Z(t) = z′) > 0

for any j, k ∈ 1, ..., q.

Step 7: Using the same argument as in Step 7 of the proof of Theorem 1, we can write:

LATE(j,d0,d1, z0, z1) =
E[ ∂Y

∂Zk
|C01]− E[ ∂Y

∂Dj
|C01]

P (C01|Z(t) = z)− P (C10|Z(t) = z)
−

E[ ∂Y
∂Zk

|C00]− E[ ∂Y
∂Dj

|C00]

P (C01|Z(t) = z)− P (C10|Z(t) = z)

for any j, k ∈ 1, ..., q.

Step 8: To account for the multiple treatments or instruments, we take a linear combination of

the ratios in Step 7. We use a vector of constants c = (z1 − z0)
−1(d1 − d0), where (z1 − z0)

−1 is

the inverse of the matrix (z1 − z0). We write:

LATE(j,d0,d1, z0, z1) = (

q∑
k=1

ckE[
∂Y

∂Zk
|Z = z, D = d]−E[

∂Y

∂Dj
|Z = z, D = d])/(

q∑
k=1

ckE[
∂Dj

∂Zk
|Z = z, D = d])

for any j ∈ 1, ..., p and c as defined above. This completes the proof of Theorem 3.
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12 Appendix D: Nonparametric or Semiparametric Models

In this appendix, we relax the parametric assumptions on the joint distribution of the outcome, the

treatment indicator, and the instrument, and explore nonparametric or semiparametric models for

our framework. We discuss how to identify and estimate the LATE in continuous time under different

nonparametric or semiparametric models. We provide some details and formulas of this extension in

Appendix E, a Theorem 4, and a simulated illustration of nonparametric or semiparametric models

in our framework.

12.1 Identification with Nonparametric or Semiparametric Models

We define the LATE in continuous time with nonparametric or semiparametric models as follows:

Definition 4. The local average treatment effect (LATE) in continuous time with nonparametric

or semiparametric models is the causal effect of a unit change in the treatment indicator on the

outcome for the subgroup of individuals who switch their treatment indicator from 0 to 1 when the

instrument changes from 0 to 1.

Formally, let Di(z) and Yi(z) denote the potential values of the treatment indicator and the

outcome for individual i at time t if the instrument were fixed at z ∈ {0, 1} for all t ∈ [0, T ]. Then

the LATE in continuous time with nonparametric or semiparametric models is given by:

LATE(d, z) = E[Yi(z)− Yi(0)|Di(0) = 0, Di(z) = 1]/(Di(z)−Di(0))

for any d ∈ {0, 1} and z ∈ {0, 1}. Note that this definition is symmetric in d and z, and that it

coincides with the discrete-time LATE with nonparametric or semiparametric models when T = 1

and Zi(t) is binary-valued.

The LATE in continuous time with nonparametric or semiparametric models measures the

marginal effect of changing the treatment indicator on the outcome for the individuals who are

induced to change their treatment indicator by the instrument. These individuals are compliers

here. The LATE in continuous time with nonparametric or semiparametric models is a local pa-

rameter that may vary depending on the values of d and z. It may not reflect the average effect of

changing the treatment indicator on the outcome for the entire population or for other subgroups,
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such as always-takers (who always receive a fixed treatment indicator regardless of the instrument)

or never-takers (who never receive a fixed treatment indicator regardless of the instrument).

We state our identification result with nonparametric or semiparametric models as follows:

Theorem 4. Under Assumptions A1-A5 (stated in Section 3) and Assumption E1 (stated below),

the LATE in continuous time with nonparametric or semiparametric models can be identified as a

ratio of conditional expectations:

LATE(d, z) = lim
t→T−

(
E[∂Y∂Z |Z(t) = z,D(t) = d]− E[ ∂Y∂D |Z(t) = z,D(t) = d]

E[∂D∂Z |Z(t) = z,D(t) = d]
)

for any d ∈ {0, 1} and z ∈ {0, 1}, where ∂Y
∂Z , ∂Y

∂D , and ∂D
∂Z are the partial derivatives of Y , Y , and

D with respect to Z, D, and Z, respectively.

The theorem shows that we can identify the LATE in continuous time with nonparametric or

semiparametric models without observing or estimating the unobserved state variable θi(t) or the

control process αi(t). We only need to observe or estimate the conditional expectations of the partial

derivatives of Y and D with respect to Z and D given (Z,D). These conditional expectations can

be interpreted as follows:

E[∂Y∂Z |Z(t) = z,D(t) = d] is the expected change in the outcome for a unit change in the

instrument, holding the treatment indicator fixed at d.

E[ ∂Y∂D |Z(t) = z,D(t) = d] is the expected change in the outcome for a unit change in the

treatment indicator, holding the instrument fixed at z.

E[∂D∂Z |Z(t) = z,D(t) = d] is the expected change in the treatment indicator for a unit change in

the instrument, holding the other variables fixed.

The numerator of the ratio in Theorem 4 measures the difference between the expected change

in the outcome for a unit change in the instrument and the expected change in the outcome for a

unit change in the treatment indicator, holding everything else fixed. The denominator measures

the expected change in the treatment indicator for a unit change in the instrument, holding ev-

erything else fixed. The ratio then reflects the marginal effect of changing the treatment indicator

on the outcome for a given subgroup. The limit then gives us the LATE in continuous time with

nonparametric or semiparametric models.
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Assumption E1 (Nonparametric or Semiparametric Specification). The joint distribu-

tion of the outcome, the treatment indicator, and the instrument is nonparametric or semiparametric,

and does not depend on any parametric functional forms or distributional assumptions. This as-

sumption allows us to use flexible methods to model the data and avoid potential misspecification

errors.

12.2 Proof of Theorem 4

Proof of Theorem 4. We use the same notation and steps as in the proof of Theorem 1, but we

relax the parametric assumptions on the joint distribution of the outcome, the treatment indicator,

and the instrument.

Step 1: By Assumption A4 (Monotonicity), we have Di(1) ≥ Di(0) almost surely for each

individual i. Therefore, we can define the following subgroups:

C00 = {i : Di(0) = 0, Di(1) = 0} (always-takers)

C01 = {i : Di(0) = 0, Di(1) = 1} (compliers)

C10 = {i : Di(0) = 1, Di(1) = 0} (defiers)

C11 = {i : Di(0) = 1, Di(1) = 1} (never-takers)

Step 2: By Assumption A5 (Independence), we have (Di(0), Di(1), Yi(0), Yi(1)) ⊥ Zi(t) for all

t ∈ [0, T ]. Therefore, we can write:

E[Yi(t)|Zi(t) = z,Di(t) = d] = E[Yi(z)|Zi(z) = z,Di(z) = d]

for any t ∈ [0, T ], z ∈ {0, 1}, and d ∈ {0, 1}.

Step 3: Using the law of iterated expectations and the law of total probability, we can write:

E[Yi(z)|Zi(z) = z,Di(z) = d] = E[Yi(z)|Cdd]P (Cdd|Zi(z) = z) + E[Yi(z)|Cd′,d]P (Cd′,d|Zi(z) = z)
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for any z ∈ {0, 1} and d ∈ {0, 1}, where d′ = 1− d.

Step 4: Using the same argument as in Step 3, but with partial derivatives instead of values, we

can write:

E[
dY

dt
|Z(t) = z′, D(t) = d′] = E[

dY

dt
|Cdd]P (Cdd|Z(t) = z′) + E[

dY

dt
|Cd′,d]P (Cd′,d|Z(t) = z′)

for any z′ ∈ {0, 1} and d′ ∈ {0, 1}.

Step 5: Using the same argument as in Step 3, but with partial derivatives instead of values and

treatment instead of outcome, we can write:

E[
dD

dt
|Z(t) = z′, D(t) = d′] = P (C01|Z(t) = z′)− P (C10|Z(t) = z′)

for any z′ ∈ {0, 1} and d′ ∈ {0, 1}.

Step 6: Using Assumption A3 (Exclusion Restriction), we have ∂Y
∂Z = 0 almost surely. Therefore,

E[
∂Y

∂Z
|Z(t) = z′, D(t) = d′] = 0

for any z′ ∈ {0, 1} and d′ ∈ {0, 1}. This implies that:

E[
dY

dt
|Cdd] = E[

dY

dt
|Cd′,d]

for any d ∈ {0, 1} and d′ = 1− d. This also implies that:

P (C01|Z(t) = z′)− P (C10|Z(t) = z′) > 0

for any z′ ∈ {0, 1}.

Step 7: Using the definitions of Steps 1 and 2, we can write:

LATE(d, z) = E[Yi(z)− Yi(0)|Di(0) = 0, Di(z) = 1]/(Di(z)−Di(0))

for any d ∈ {0, 1} and z ∈ {0, 1}. Using the results of Steps 3-6, we can write:
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LATE(d, z) =
E[dYdt |C01]− E[dYdt |C00]

P (C01|Z(t) = z)− P (C10|Z(t) = z)
−

E[dYdt |C00]− E[dYdt |C10]

P (C01|Z(t) = z)− P (C10|Z(t) = z)

for any d ∈ {0, 1} and z ∈ {0, 1}.

Step 8: To account for the continuous-time nature of the treatment and the outcome, we take the

limit as t approaches T from below. We use the fact that limt→T− Yi(t) = Yi(T ) and limt→T− Di(t) =

Di(T ) almost surely. We write:

LATE(d, z) = lim
t→T−

(
E[∂Y∂Z |Z(t) = z,D(t) = d]− E[ ∂Y∂D |Z(t) = z,D(t) = d]

E[∂D∂Z |Z(t) = z,D(t) = d]
)

for any d ∈ {0, 1} and z ∈ {0, 1}.

This completes the proof of Theorem 4.
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