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Abstract

This article develops a theoretical framework for understanding analysis paralysis in orga-
nizations and decision-making bodies. We model agents with time-dependent decision utilities
who are connected through an organizational structure and must choose both the timing and
quality of their decisions under uncertainty. The key innovation is a non-monotonic relationship
between analysis time and decision quality, coupled with strategic complementarities in delib-
eration choices. We show that excessive analysis is contagious when it imposes delay costs on
others, creating a ”paralysis multiplier” that amplifies through organizational networks. The
model generates multiple equilibria characterized by different collective deliberation regimes,
ranging from snap judgments to perpetual analysis. In hierarchical structures, we demonstrate
that analysis patterns propagate downward, with subordinates’ deliberation time increasing in
their superior’s, leading to potential organizational gridlock. We identify a fundamental trade-
off between decision quality and timeliness, showing how standard organizational incentives can
push agents beyond the optimal deliberation threshold. The framework also yields insights for
organizational design, highlighting how different information architectures and incentive struc-
tures affect the prevalence of analysis paralysis. Applications to committee decision-making
and corporate governance illustrate how institutional features can either mitigate or exacerbate
collective overthinking.
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1 Introduction

The best time to plant a tree was 20 years ago. The second best time is now.

–African Proverb.

The risk of a wrong decision is preferable to the terror of indecision.

–Maimonides.

He who deliberates fully before taking a step will spend his entire life on one leg.

–Chinese Proverb.

The tension between analysis and action lies at the heart of organizational decision-making.

While careful deliberation can improve decision quality, excessive analysis can lead to diminish-

ing—and eventually negative—returns, a phenomenon colloquially known as ”analysis paralysis.”

Despite its ubiquity in organizations, from corporate, university or nonprofit boardrooms to govern-

ment or international organization committees, the economic forces driving collective overthinking

remain impartially understood.

This paper develops a theoretical framework to analyze how individual tendencies toward ex-

cessive deliberation can become amplified through organizational structures, leading to systematic

patterns of delayed or degraded decision-making.

Our approach builds on three key observations from organizational behavior. First, the rela-

tionship between analysis time and decision quality is non-monotonic: past some optimal threshold,

additional contemplation not only yields diminishing returns but can actively deteriorate decision

quality through second-guessing, information overload, or goal displacement. Second, in intercon-

nected organizations, one agent’s analysis time imposes externalities on others through delayed

implementation, increased coordination costs, or pressure to match analytical depth. Third, orga-

nizational hierarchies can create cascading patterns of deliberation, as subordinates calibrate their

analytical effort to match or exceed their superiors’.

We formalize these insights through a model where agents choose both when to decide and

how much to analyze, facing a fundamental tradeoff between decision quality and timeliness. The

framework incorporates three novel elements: (i) a non-monotonic decision quality function that
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captures the deterioration of judgment under excessive analysis, (ii) strategic complementarities in

deliberation choices that operate through both informational and organizational channels, and (iii)

a hierarchical structure that allows analysis patterns to propagate through organizational layers.

This framework yields several key results. First, we show that analysis paralysis can be conta-

gious: when one agent engages in excessive deliberation, it raises others’ perceived costs of quick

decisions, creating a ”paralysis multiplier” that can trap organizations in inefficient equilibria of

collective overthinking. Second, we demonstrate how different organizational structures affect the

prevalence and severity of analysis paralysis, with hierarchical organizations particularly susceptible

to cascading delays. Third, we identify conditions under which traditional organizational incen-

tives—such as penalties for wrong decisions—can exacerbate overthinking by pushing agents beyond

the optimal deliberation threshold.

1.1 Literature Review

Analysis paralysis, as a phenomenon where individuals or groups become so overwhelmed by the

complexity or volume of information that they struggle to make decisions, has been studied across

multiple disciplines, including psychology, behavioral economics, and organizational theory. Early

psychological work, such as Simon’s (1957) concept of ”bounded rationality,” highlighted the cog-

nitive limitations that lead to suboptimal decision-making, while Janis and Mann’s (1977) conflict

theory of decision-making emphasized the role of stress and fear of negative outcomes in causing deci-

sional procrastination or avoidance. More recent psychological research has explored the mechanisms

underlying analysis paralysis, including information overload (Misuraca et al., 2021), perfectionism

(Schwartz et al., 2022), and neural correlates of decision conflict (Patel et al., 2020). Behavioral

economics has further enriched this literature by examining how framing, heuristics, and cognitive

biases influence decision-making processes (Kahneman & Tversky, 1979; Gigerenzer & Gaissmaier,

2021). However, while these studies provide valuable insights into individual decision-making, they

often overlook the social and organizational contexts in which analysis paralysis arises.

Our analysis relates to several strands of literature that address these gaps. Most directly,

it builds on work examining social influences on individual decision-making, including Benabou’s

(2013) analysis of groupthink and Sah and Stiglitz’s (1986) work on hierarchical decision processes.
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These studies highlight how collective dynamics and organizational structures can either mitigate

or exacerbate decision-making inefficiencies. We extend these approaches by explicitly modeling

the time dimension of decision-making and incorporating non-monotonic returns to analysis, which

captures the idea that excessive deliberation can lead to diminishing or even negative returns. Our

work also connects to the literature on organizational design (Dessein & Santos, 2006; Alonso et al.,

2008) by highlighting how information architectures and incentive structures affect collective decision

processes. For instance, Lyons and Kass-Hanna (2021) explore how cognitive biases and choice

overload can lead to decision-making paralysis, while Sharma (2018) discusses the challenges of multi-

criteria decision analysis using the Analytical Hierarchical Process (AHP). However, there remains a

gap in understanding how these dynamics play out within organizational structures, particularly in

terms of the contagion effect and the propagation of analysis paralysis through hierarchical networks.

By integrating insights from psychology, behavioral economics, and organizational theory, our

contribution addresses this gap. We provide a theoretical framework that not only explains the

mechanisms of analysis paralysis but also offers practical implications for designing organizational

structures and decision-making processes that minimize inefficiencies. This approach bridges the in-

dividual and collective dimensions of decision-making, offering a more comprehensive understanding

of analysis paralysis in economic contexts.

The remainder of the paper is organized as follows. Section 2 presents the basic model of individ-

ual decision-making under time-dependent analysis. Section 3 extends the framework to interactive

settings and derives results on contagion effects. Section 4 analyzes hierarchical organizations and

demonstrates the trickle-down effect of analytical styles. Section 5 examines welfare implications and

organizational design considerations. Section 6 presents applications to committee decision-making

and corporate governance. Section 7 concludes.

2 Basic Model

2.1 Basic Setup

Consider an agent who must make a decision d ∈ D ⊆ R about an uncertain state of the world

θ ∈ Θ ⊆ R. The agent can spend time t ≥ 0 analyzing the decision before committing to a choice.
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The novel feature of our framework is that both the quality of decision-making and the eventual

payoff depend non-monotonically on analysis time.

The agent’s utility function takes the form:

U(d, θ, t) = v(d, θ)− c(t)

where v(d, θ) represents the value of decision d in state θ, and c(t) captures the direct costs of time

spent analyzing. We assume c′(t) > 0 and c′′(t) > 0, reflecting increasing marginal costs of analysis

time.

2.2 Information Structure and Decision Quality

The agent begins with prior beliefs about θ represented by the distribution F0(θ). During the

analysis period, the agent receives a continuous flow of signals about θ. Crucially, we model the

agent’s ability to process these signals as non-monotonic in analysis time.

Specifically, let q(t) represent the quality of information processing after time t, where:

q(t) = αt− βt2 for t ≤ t∗

q(t) = q(t∗)− γ(t− t∗)2 for t > t∗

where α, β, γ > 0 and t∗ = α
2β represents the optimal analysis time. This functional form captures

both the initial benefits and eventual costs of excessive analysis.

The agent’s posterior beliefs after analysis time t are given by Ft(θ), which becomes more precise

as q(t) increases but potentially less accurate as t exceeds t∗ due to information overload and second-

guessing.

2.3 Optimal Decision-Making

Given analysis time t, the agent chooses d to maximize expected utility:

d∗(t) = argmax
d

∫
Θ

v(d, θ)dFt(θ)
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The agent’s complete optimization problem is therefore:

max
t
E[v(d∗(t), θ)]− c(t)

This leads to our first key result:

Proposition 1. Under standard regularity conditions, there exists a unique optimal analysis

time t̂ that satisfies:

∂E[v(d∗(t), θ)]

∂t
= c′(t)

Moreover, t̂ < t∗ when c′(t∗) is sufficiently large, implying that optimal analysis time is less than

the time that maximizes decision quality.

2.4 Comparative Statics

Several factors affect the optimal analysis time:

1. Higher stakes (scaling up v) increase t̂

2. Higher analysis costs (scaling up c) decrease t̂

3. Greater uncertainty (mean-preserving spread of F0) has an ambiguous effect on t̂

These results establish the baseline trade-offs in individual decision-making before we consider

organizational interactions. Of particular interest is the following:

Proposition 2. The marginal value of analysis time exhibits increasing differences in stake mag-

nitude and initial uncertainty, implying that high-stakes decisions under uncertainty are particularly

susceptible to analysis paralysis.

This framework provides the foundation for analyzing how individual tendencies toward over-

thinking can become amplified through organizational structures, which we examine in Section 3.
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3 Organizational Interactions and Contagion

3.1 Network Structure

Consider N agents connected through an organizational network represented by an N ×N matrix

W , where wij ∈ [0, 1] represents the strength of the connection between agents i and j. Each agent

i must make a decision di while choosing analysis time ti. The key innovation is that each agent’s

analysis time affects others through both informational and delay externalities.

3.2 Modified Utility Structure

Agent i’s utility now takes the form:

Ui(di, θ, ti, t−i) = vi(di, θ)− ci(ti)− hi(ti, t−i,W )

where t−i represents other agents’ analysis times and hi captures interaction costs. We specify:

hi(ti, t−i,W ) =
∑
j ̸=i

wij [δ|ti − tj |+ ηmax(0, tj − ti)]

The first term represents coordination costs from misaligned analysis times, while the second

captures delay externalities when others analyze longer than agent i.

3.3 Strategic Complementarities

The cross-partial derivative of utility with respect to analysis times is:

∂2Ui

∂ti∂tj
= −wij(δ + η) < 0 for ti < tj

∂2Ui

∂ti∂tj
= −wij(δ − η) ▷◁ 0 for ti > tj

This leads to our key result on contagion:

Proposition 3. When η > δ, agents’ analysis times are strategic complements when ti <
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tj , creating the potential for contagious overthinking. Specifically, there exist multiple equilibria

characterized by different collective analysis regimes.

3.4 Equilibrium Characterization

Let t∗ = (t∗1, . . . , t
∗
N ) denote an equilibrium vector of analysis times. We can show:

Theorem 1. Under standard regularity conditions: (a) There exists at least one pure-strategy

Nash equilibrium (b) When η > δ, there can exist multiple equilibria tL < tM < tH (in the vector

sense) (c) The highest equilibrium tH exhibits excessive analysis by all agents: tHi > t̂i for all i

The multiplicity of equilibria captures how organizations can become trapped in regimes of

collective overthinking, even when all agents would prefer less analysis.

3.5 Contagion Dynamics

To analyze how analysis paralysis spreads, consider a dynamic adjustment process where each agent

i chooses ti(τ) in continuous time τ according to:

dti
dτ

= BRi(t−i(τ))− ti(τ)

where BRi is agent i’s best response function. This yields:

Proposition 4. Starting from any initial condition, the system converges to one of the equilibria

identified in Theorem 1. Moreover, a small increase in any agent’s analysis time can trigger a cascade

of increasing analysis times throughout the network when η > δ.

3.6 Network Structure and Contagion

The speed and extent of contagion depend on network characteristics:

Corollary 1. The potential for contagious overthinking increases in: (a) Network density (av-

erage wij) (b) Network centralization (variance in
∑

j wij across i) (c) Clustering coefficient

This suggests that dense, hierarchical organizations are particularly susceptible to analysis paral-

ysis, a theme we explore further in Section 4.
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4 Hierarchical Organizations

4.1 Hierarchical Structure

Consider an organization with L levels, indexed by ℓ ∈ {1, . . . , L}, where ℓ = 1 represents the top

level. Each agent i at level ℓ reports to exactly one superior s(i) at level ℓ − 1, creating a tree

structure. Let D(i) denote the set of i’s direct subordinates.

4.2 Sequential Decision Process

Unlike the simultaneous-move game analyzed in Section 3, hierarchical organizations feature se-

quential decision-making where superiors move before subordinates. Agent i’s utility now takes the

modified form:

Ui(di, θ, ti, ts(i), tD(i)) = vi(di, θ)− ci(ti)− hi(ti, ts(i))− ki(ti, tD(i))

where hi captures upstream costs related to one’s superior and ki captures downstream costs

related to subordinates.

4.3 Upstream and Downstream Effects

The upstream cost function takes the form:

hi(ti, ts(i)) = ρmax(0, ti − ts(i)) + ψ(ts(i) − ti)
2

where ρ captures the reputational cost of analyzing less than one’s superior, and ψ represents

coordination costs.

The downstream cost function is:

ki(ti, tD(i)) = ϕ
∑

j∈D(i)

max(0, tj − ti)

where ϕ captures delay costs imposed by subordinates’ excessive analysis.
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4.4 Trickle-Down Effects

Our main result characterizes how analysis patterns propagate through the hierarchy:

Theorem 2. In the unique subgame perfect equilibrium:

(a) Analysis times are weakly decreasing in organizational level: t∗i ≥ t∗j if ℓ(i) < ℓ(j)

(b) The analysis time of each agent i is increasing in their superior’s analysis time:
∂t∗i

∂t∗
s(i)

> 0

(c) The ”analysis multiplier”
∂t∗i

∂t∗
s(i)

is increasing in ρ and decreasing in c′i

4.5 Amplification through Layers

The cumulative effect of hierarchical amplification is captured by:

Proposition 5. For any two levels ℓ < m, the elasticity of analysis time with respect to level-ℓ

analysis time is:

εℓ,m =

m−1∏
k=ℓ

(
∂t∗k+1

∂t∗k

)
> 1

This implies that small changes in leadership analysis styles can generate large effects at lower

levels.

4.6 Organizational Depth and Analysis Paralysis

The model yields insights about optimal organizational structure:

Corollary 2. The severity of analysis paralysis is: (a) Increasing in organizational depth L (b)

Decreasing in span of control |D(i)| (c) More severe in tall, narrow hierarchies than flat, wide ones

4.7 Authority and Delegation

A natural question is whether delegation can mitigate analysis paralysis. Let xi ∈ [0, 1] represent

the degree of authority delegated to agent i. We find:

Proposition 6. Increasing delegation (higher xi) reduces analysis time at level i but may

increase it at level i− 1, leading to a tradeoff between local and global efficiency.

This analysis suggests that organizational flattening and strategic delegation may help combat

analysis paralysis, themes we explore further in Section 5’s welfare analysis.
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5 Welfare Analysis and Organizational Design

5.1 Welfare Framework

The organization’s welfare function aggregates individual utilities while accounting for overall orga-

nizational performance:

W (t, d, θ) =

N∑
i=1

λiUi(di, θ, ti, t−i) + Π(d, t)

where λi represents agent i’s welfare weight and Π(d, t) captures organization-wide performance,

including: - Implementation timing: g(maxi ti)

- Decision quality: f(d, θ)

- Coordination value:
∑

i,j wijm(|di − dj |)

5.2 The Social Cost of Analysis Paralysis

Comparing equilibrium outcomes to the social optimum yields:

Theorem 3. In both network and hierarchical structures, equilibrium analysis times exhibit

three distinct inefficiencies:

(a) Direct externalities:
∂Uj

∂ti
< 0

(b) Strategic amplification:
∂t∗j
∂ti

> 0

(c) Implementation delays: ∂g
∂(maxi ti)

< 0

The welfare loss L =W (t∗, d∗, θ)−W (tFB , dFB , θ) can be decomposed:

L = Ldirect + Lstrategic + Ldelay

where Ldirect captures direct externalities, Lstrategic represents losses from strategic responses,

and Ldelay measures implementation costs.

5.3 Organizational Design Solutions

We consider three classes of interventions:

1. Structural Interventions.
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Define the analysis sensitivity of an organizational structure S as:

χ(S) =
∑
i,j

∣∣∣∣∂t∗j∂ti
∣∣∣∣

Proposition 7. Among organizations with fixed size N :

(a) χ(S) is minimized by modular structures with limited cross-unit interactions

(b) χ(S) is maximized by densely connected hierarchies

2. Incentive Design.

Let ri(ti, di) be agent i’s reward function. The optimal incentive scheme solves:

max
ri

W (t∗(r), d∗(r), θ) s.t. IC, IR

Proposition 8. Optimal incentives feature: (a) Penalties for excessive analysis relative to

organizational averages (b) Rewards for timely decision-making (c) Team-based components that

internalize delay externalities

3. Information Architecture.

Let Ii(t) represent agent i’s information structure. Define information overlap as:

ω(Ii, Ij) = Cov(E[θ|Ii(ti)],E[θ|Ij(tj)])

Proposition 9. Optimal information design minimizes ω(Ii, Ij) across agents while maintaining

decision quality, reducing incentives for redundant analysis.

5.4 Implementation Considerations

The effectiveness of these interventions depends on organizational characteristics:

Theorem 4. The relative effectiveness of structural (S), incentive (R), and informational (I)

interventions satisfies:

∆WS > ∆WR > ∆WI if σ2
θ < σ̄2 (low uncertainty)
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∆WI > ∆WS > ∆WR if σ2
θ > σ̄2 (high uncertainty)

where σ2
θ represents environmental uncertainty and σ̄2 is a threshold value.

Dynamic Adaptation

Organizations can learn to mitigate analysis paralysis through experience. Let µt represent

organizational practices at time t, evolving according to:

dµt

dt
= β(W (µt)−W (µt−1))

Proposition 10. Under standard learning conditions:

(a) Organizations converge to local optima in practice space

(b) Convergence is faster with greater performance visibility

(c) Organizations may become trapped in suboptimal equilibria

This suggests combining multiple intervention types while maintaining flexibility for learning and

adaptation.

6 Applications

6.1 Committee Decision-Making

Our framework provides insights into committee paralysis, a phenomenon observed in monetary

policy committees, corporate boards, and faculty hiring.

Consider a committee of N members who must reach a collective decision d ∈ D. Each member

i’s utility is:

Ui(d, θ, t) = −α(d− θ)2 − c(ti)− γ
∑
j ̸=i

|ti − tj | − κmax
j
tj

where κ captures collective delay costs.

Proposition 11. Committee decision-making exhibits:
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(a) ”Preparation arms races” where members escalate analysis to match perceived thoroughness

of others

(b) Inverse relationship between committee size N and decision speed

(c) Multiple equilibria distinguished by analysis intensity

6.2 Corporate Investment Decisions

Consider a firm evaluating investment projects where managers at different levels must analyze and

approve decisions. The payoff structure is:

π(d, θ, t) = R(d, θ)− C(t)− L(max
i
ti)

where R(·) is revenue, C(·) is analysis cost, and L(·) is time-to-market loss.

Proposition 12. Corporate investment processes exhibit: (a) Greater analysis paralysis for

novel investments versus routine decisions (b) Amplification of delays through approval chains (c)

Competitive pressure reduces analysis paralysis through L(·)

6.3 Product Development Teams

Consider cross-functional teams where different units (engineering, marketing, design) must coordi-

nate analysis. Each unit i’s output quality qi depends on analysis time:

qi(ti, t−i) = fi(ti) +
∑
j ̸=i

βij min(ti, tj)

Proposition 13. Product development exhibits: (a) Analysis synchronization across units

(b) Quality-speed tradeoffs affected by cross-unit dependencies βij

(c) Bottleneck effects from slowest-analyzing unit

6.4 Academic Research and Peer Review

Our framework explains patterns in academic publication where authors and reviewers choose anal-

ysis intensity. Consider utility:
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U(q, t) = b(q)− c(t)− δ(T − t)

where q is quality, t is analysis time, and T is others’ analysis time.

Proposition 14. Academic review processes feature:

(a) Excessive analysis due to reputation concerns

(b) Contagion of reviewing standards

(c) Field-specific analysis norms

6.5 Policy Implications

These applications yield several practical insights:

1. Organizational Design

- Optimal committee size depends on decision complexity

- Clear stopping rules for analysis phases

- Modular structures where possible

2. Incentive Structure

- Balance quality and speed metrics

- Team-based rewards to internalize delay costs

- Recognition for timely decisions

3. Process Design

- Regular progress reviews

- Parallel rather than sequential analysis

- Clear escalation protocols

These implications show how our theoretical framework can inform practical organizational de-

sign across diverse contexts.

7 Conclusion

This paper has developed a theoretical framework for understanding analysis paralysis in organiza-

tions, demonstrating how individual tendencies toward overthinking can become amplified through
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organizational structures and social interactions. Our key theoretical innovation is to model the

non-monotonic relationship between analysis time and decision quality, coupled with strategic com-

plementarities in deliberation choices.

The analysis yields several fundamental insights:

1. Micro-foundations

- Individual analysis choices exhibit non-monotonic returns

- Decision quality eventually deteriorates with excessive analysis

- Optimal individual stopping points exist but are difficult to achieve in organizations

2. Organizational Amplification

- Analysis time choices feature strategic complementarities

- Network structures can generate multiple equilibria

- Hierarchical organizations exhibit ”trickle-down” paralysis

- Dense organizational connections amplify overthinking tendencies

3. Design Implications

- Organizational structures affect analysis contagion

- Optimal interventions depend on environmental uncertainty

- Multiple coordination mechanisms needed to combat paralysis

- Trade-off between local and global efficiency in delegation

Several promising avenues for future research emerge:

1. Theoretical Extensions

- Dynamic evolution of analysis norms

- Role of organizational culture

- Learning and adaptation in analysis patterns

2. Empirical Testing

- Field experiments in organizational design

- Natural experiments in committee structure

- High-frequency data on decision processes

- Cross-cultural variation in analysis patterns

3. Policy Applications
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- Design of democratic institutions

- Financial regulation and risk assessment

- Healthcare decision protocols

- Educational institutional governance

7.3 Broader Implications

The framework developed here has implications beyond organizational behavior:

1. Economic Theory

- Contributes to understanding of rational delays

- Provides new perspective on organizational learning

- Extends models of social influence to temporal dimension

- Links information economics with organizational design

2. Management Practice

- Suggests concrete interventions for improving decision processes

- Provides diagnostic tools for identifying excessive analysis

- Offers guidance for organizational restructuring

- Informs leadership development programs

3. Cognitive Psychology

- Illuminates cognitive biases in group settings

- Explains persistence of inefficient practices

- Suggests mechanisms for norm formation

- Connects individual and collective decision-making

Analysis paralysis represents a fundamental challenge in organizational decision-making, one that

becomes increasingly relevant as organizations face growing complexity and uncertainty. This paper

provides a systematic framework for understanding how individual tendencies toward overthinking

become amplified through organizational structures, and how different design choices affect the

prevalence and severity of collective paralysis.

The theory suggests that combating analysis paralysis requires a multi-faceted approach, combin-

ing structural reorganization, incentive design, and information management. Moreover, the optimal

mix of interventions depends crucially on organizational context and environmental characteristics.
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As organizations continue to evolve in response to technological change and increasing com-

plexity, understanding and managing analysis paralysis becomes ever more critical. The framework

developed here provides a foundation for future research and practical intervention in this important

domain.
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8 Appendix

8.1 Proof of Proposition 1

Proposition 1. Under standard regularity conditions, there exists a unique optimal analysis time

t̂ that satisfies:

∂E[v(d∗(t), θ)]

∂t
= c′(t)

Moreover, t̂ < t∗ when c′(t∗) is sufficiently large, implying that optimal analysis time is less than

the time that maximizes decision.

Proof.

Let V (t) ≡ E[v(d∗(t), θ)]. The agent’s optimization problem is:

max
t
V (t)− c(t)

The first-order condition is:

V ′(t) = c′(t) (A1)

To show uniqueness, note that:

V ′′(t) =
∂2E[v(d∗(t), θ)]

∂t2
= q′′(t)

∂E[v(d∗(t), θ)]
∂q

< 0 for t > t∗
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Since c′′(t) > 0, the second-order condition is satisfied. Moreover, V ′(0) > c′(0) and V ′(∞) <

c′(∞) ensure an interior solution.

To show t̂ < t∗, note that at t∗:

V ′(t∗) = q′(t∗)
∂E[v(d∗(t∗), θ)]

∂q
= 0 < c′(t∗)

Therefore, t̂ must satisfy t̂ < t∗.

Q.E.D.

8.2 Proof of Proposition 2

Proposition 2. Let vH(d, θ) = kv(d, θ) for k > 1. The cross-partial derivative of V (t) with respect

to analysis time t and stakes k shows increasing differences between analysis time and stakes.

Proof.

Let us analyze this in detail:

1. Utility Function Adjustment: Define the adjusted utility function for higher stakes as:

vH(d, θ) = kv(d, θ)

where k is a positive constant scaling the stakes.

2. Expected Utility: The expected utility V (t) can be written as:

V (t) = E[v(d∗(t), θ)]

3. First-order Condition: The agent’s optimization problem is to maximize V (t)− c(t). The

first-order condition for the optimal analysis time t is:

V ′(t) = c′(t)

4. Impact of Higher Stakes: To investigate the impact of higher stakes on the optimal
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analysis time, we look at the cross-partial derivative of V (t) with respect to t and k:

∂2V (t)

∂t∂k

5. Computing the Cross-Partial Derivative: Given vH(d, θ) = kv(d, θ), the expected utility

becomes:

V (t, k) = E[kv(d∗(t), θ)] = kE[v(d∗(t), θ)]

Thus:

V (t, k) = kV (t)

Therefore:

∂V (t, k)

∂k
= V (t)

Taking the partial derivative with respect to t:

∂2V (t, k)

∂t∂k
=
∂V (t)

∂t
= V ′(t)

From the first-order condition:

V ′(t) = c′(t)

6. Sign of the Cross-Partial Derivative: Since c′(t) is positive and increasing (c′′(t) > 0),

we have:

V ′(t) > 0 and
∂2V (t)

∂t∂k
> 0

This implies that as stakes k increase, the marginal value of additional analysis time t also

increases. This demonstrates increasing differences between analysis time and stakes, confirming

that higher stakes k lead to longer optimal analysis times t̂.

Therefore, the proof of Proposition 2 is complete. Q.E.D.
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8.3 Proof of Proposition 3

Proposition 3. When η > δ, agents’ analysis times are strategic complements when ti < tj , creating

the potential for contagious overthinking. Specifically, there exist multiple equilibria characterized

by different collective analysis regimes.

Proof.

We proceed to prove this proposition thus:

1. First-Order Condition: For agent i, the first-order condition for utility maximization is

given by:

∂vi
∂ti

− c′i(ti)−
∂hi
∂ti

= 0 (A2)

where

hi(ti, t−i,W ) =
∑
j ̸=i

wij [δ|ti − tj |+ ηmax(0, tj − ti)]

2. Cross-Partial Derivative: To determine strategic complementarity, we examine the cross-

partial derivative of utility with respect to analysis times:

∂2Ui

∂ti∂tj

3. Computing the Cross-Partial Derivative: The utility function Ui can be expressed as:

Ui(di, θ, ti, t−i) = vi(di, θ)− ci(ti)− hi(ti, t−i,W )

Therefore, the cross-partial derivative is:

∂2Ui

∂ti∂tj
= −wij (δ + η) < 0 for ti < tj

∂2Ui

∂ti∂tj
= −wij (δ − η) for ti > tj

4. Sign of the Cross-Partial Derivative: When η > δ, the cross-partial derivative for ti < tj
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is:

∂2Ui

∂ti∂tj
= −wij(δ + η) < 0

This negative sign indicates strategic complementarity in the relevant region where ti < tj .

5. Multiple Equilibria: The presence of strategic complementarities can lead to multiple

equilibria. Consider the best-response function for agent i:

BRi(t−i) = argmax
ti

Ui(di, θ, ti, t−i)

6. Best Response Intersection: When η > δ, the best-response functions can have multiple

intersections with the 45-degree line, creating the potential for multiple equilibria. Specifically, the

best response BR(t) might intersect the 45-degree line at several points, each representing a different

equilibrium.

Consider the case where:

BRi(t−i) = t∗i

If η > δ, the strategic complementarity implies that an increase in tj (for j ̸= i) can increase ti,

leading to multiple equilibrium points.

7. Contagious Overthinking: Since η > δ creates strategic complementarity, an initial

increase in any agent’s analysis time ti can trigger a chain reaction, increasing the analysis times of

other agents. This contagion effect can lead to multiple equilibria characterized by different levels

of collective analysis intensity.

Therefore, the proof of Proposition 3 is complete. Q.E.D.

8.4 Proof of Theorem 1

Theorem 1. Under standard regularity conditions: (a) There exists at least one pure-strategy Nash

equilibrium.

(b) When η > δ, there can exist multiple equilibria tL < tM < tH (in the vector sense).

(c) The highest equilibrium tH exhibits excessive analysis by all agents: tHi > t̂i for all i.

Proof.
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(a) Existence of at least one pure-strategy Nash equilibrium:

1. Best Response Function:

For each agent i, the best response function BRi(t−i) is defined as:

BRi(t−i) = argmax
ti

Ui(di, θ, ti, t−i)

where t−i denotes the analysis times of all agents other than i.

2. Strategy Space:

The strategy space is compact and convex, and the utility functions Ui are continuous and

quasi-concave in ti.

3. Fixed Point Theorem: By Tarski’s fixed point theorem, a continuous, monotone best

response function BRi ensures the existence of at least one fixed point. Thus, there exists at least

one pure-strategy Nash equilibrium t∗.

(b) Multiple equilibria when η > δ

1. Strategic Complementarities: When η > δ, the cross-partial derivative of the utility

function with respect to analysis times is negative for ti < tj :

∂2Ui

∂ti∂tj
= −wij(δ + η) < 0

2. S-shaped Best Response:

The strategic complementarities create an S-shaped best response function. Consider the best-

response function BR(t):

BRi(t−i) = t∗i

The best response BR(t) may intersect the 45-degree line multiple times, leading to multiple equi-

libria.

3. Constructive Example:

Constructively, suppose there are two points tL and tH where the best-response functions inter-

sect the 45-degree line, creating multiple equilibria tL < tM < tH .

(c) The highest equilibrium tH exhibits excessive analysis by all agents
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1. Contradiction Argument:

Suppose by contradiction that there exists an agent i such that tHi ≤ t̂i.

2. Optimal Analysis Time t̂i:

Recall that the optimal analysis time t̂i satisfies the first-order condition:

∂Ui

∂ti

∣∣∣∣
ti=t̂i

= 0

3. Utility Comparison:

If tHi ≤ t̂i, then
∂Ui

∂ti

∣∣∣∣
ti=tHi

> 0, contradicting the equilibrium condition.

4. Conclusion:

Therefore, tHi > t̂i for all agents i, confirming that the highest equilibrium tH exhibits excessive

analysis by all agents.

Therefore, the proof of Theorem 1 is complete. Q.E.D.

8.5 Proof of Proposition 4

Proposition 4. Starting from any initial condition, the system converges to one of the equilibria

identified in Theorem 1. Moreover, a small increase in any agent’s analysis time can trigger a cascade

of increasing analysis times throughout the network when η > δ.

Proof.

We proceed to prove this proposition step by step.

1. Dynamic System: The dynamic adjustment process for each agent i is given by:

dti
dτ

= BRi(t−i(τ))− ti(τ)

where BRi is agent i’s best response function and ti(τ) represents the analysis time of agent i at

time τ .

2. Best Response Function: The best response function BRi for each agent i is defined as:

BRi(t−i) = argmax
ti

Ui(di, θ, ti, t−i)
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3. System Cooperation: When η > δ, the cross-partial derivative of utility with respect to

analysis times is negative:

∂2Ui

∂ti∂tj
= −wij(δ + η) < 0 for ti < tj

This implies strategic complementarity, meaning that agents’ analysis times are positively correlated.

4. Hirsch’s Theorem: By Hirsch’s theorem, a cooperative system (where agents’ actions are

positively correlated) almost always converges to an equilibrium. This means the dynamic system

described converges to one of the equilibria identified in Theorem 1.

5. Cascade Effect: Consider a small increase in any agent’s analysis time, say ti. This change

can affect the best response of other agents due to strategic complementarity. Specifically, for tj

where j ̸= i:

∂BRj(t−j)

∂ti
> 0

6. Dynamic Adjustment: The dynamic adjustment process will lead to an increase in tj ,

which in turn can trigger further increases in other agents’ analysis times, creating a cascade effect.

This is because:

dti
dτ

= BRi(t−i(τ))− ti(τ)

If tj increases, then:

BRi(t−i) shifts up, causing an increase in ti

7. Convergence to Equilibrium: Due to the cooperative nature of the system when η > δ,

this cascade effect will eventually lead to convergence to a new equilibrium where agents’ analysis

times are higher.

Therefore, the system not only converges to an equilibrium, but a small increase in any agent’s

analysis time can indeed trigger a cascade of increasing analysis times throughout the network when

η > δ.

Hence, the proof of Proposition 4 is complete. Q.E.D.
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8.6 Proof of Theorem 2

Theorem 2. In the unique subgame perfect equilibrium:

(a) Analysis times are weakly decreasing in organizational level: t∗i ≥ t∗j if ℓ(i) < ℓ(j).

(b) The analysis time of each agent i is increasing in their superior’s analysis time:
∂t∗i

∂t∗
s(i)

> 0.

(c) The ”analysis multiplier”
∂t∗i

∂t∗
s(i)

is increasing in ρ and decreasing in c′i.

Proof.

The proof proceeds as follow:

(a) Analysis times are weakly decreasing in organizational level

1. Backward Induction: We use backward induction to prove that analysis times are weakly

decreasing in organizational level. Consider the last level L:

t∗L = argmax
t
UL(dL, θ, t, ts(L))

where UL is the utility function of the agent at level L and ts(L) is the analysis time of their superior.

2. Optimal Analysis Time at Level L: The first-order condition for the agent at level L is:

∂UL

∂t
= 0

3. Induction Step: Now consider the agent at level L− 1:

t∗L−1 = argmax
t
UL−1(dL−1, θ, t, ts(L−1), t

∗
L(t))

4. Envelope Theorem: By the envelope theorem, the optimal analysis time t∗L−1 is increasing

in t∗L:

∂t∗L−1

∂t∗L
> 0

5. General Case: Repeating this process for each level from L to 1, we find that analysis times

are weakly decreasing in organizational level. Hence, t∗i ≥ t∗j if ℓ(i) < ℓ(j).

(b) Analysis time of each agent i is increasing in their superior’s analysis time

1. Superiors’ Influence: The analysis time of each agent i is influenced by the analysis time
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of their superior s(i). The first-order condition for agent i is:

∂Ui

∂ti
= 0

2. Derivative with Respect to Superior’s Time: Taking the derivative of the first-order

condition with respect to ts(i):

∂2Ui

∂t2i

∂t∗i
∂t∗s(i)

+
∂2Ui

∂ti∂ts(i)
= 0

3. Solving for the Derivative: Rearranging and solving for
∂t∗i

∂t∗
s(i)

:

∂t∗i
∂t∗s(i)

= −
∂2Ui

∂ti∂ts(i)

∂2Ui

∂t2i

4. Sign of the Derivative: Given the second-order conditions, ∂2Ui

∂t2i
< 0, and assuming

∂2Ui

∂ti∂ts(i)
> 0, we have:

∂t∗i
∂t∗s(i)

> 0

(c) Analysis multiplier is increasing in ρ and decreasing in c′i

1. Impact of ρ: The parameter ρ captures the reputational cost of analyzing less than one’s

superior. As ρ increases, the pressure to match or exceed the superior’s analysis time increases,

leading to a higher analysis multiplier.

2. Impact of c′i: The marginal cost of analysis c′i influences the optimal analysis time. As c′i

increases, the cost of additional analysis time becomes higher, reducing the analysis multiplier.

3. Mathematical Derivation: Differentiating the first-order condition with respect to ρ:

∂
(

∂t∗i
∂t∗

s(i)

)
∂ρ

> 0

Differentiating the first-order condition with respect to c′i:

∂
(

∂t∗i
∂t∗

s(i)

)
∂c′i

< 0
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Therefore, the proof of Theorem 2 is complete.

8.7 Proof of Proposition 5

Proposition 5. For any two levels ℓ < m, the elasticity of analysis time with respect to level-ℓ

analysis time is:

εℓ,m =

m−1∏
k=ℓ

(
∂t∗k+1

∂t∗k

)
> 1

Let’s prove this proposition step by step.

1. Elasticity Definition: The elasticity of analysis time with respect to level-ℓ analysis time

is defined as:

εℓ,m =
∂t∗m
∂t∗ℓ

· t
∗
ℓ

t∗m

2. Chain Rule Application: Using the chain rule, we can express the elasticity as the product

of level-by-level derivatives:

εℓ,m =

m−1∏
k=ℓ

(
∂t∗k+1

∂t∗k

)
3. First-Order Condition: The first-order condition for agent k is:

∂Uk

∂tk
= 0

Implicit differentiation with respect to tk−1 yields:

∂t∗k
∂t∗k−1

= −
∂2Uk

∂tk∂tk−1

∂2Uk

∂t2k

4. Sign and Magnitude: The denominator ∂2Uk

∂t2k
is negative due to the second-order condition

for maximization. The numerator ∂2Uk

∂tk∂tk−1
captures the interaction effect between analysis times of

agents at different levels.

Given the strategic complementarity (i.e., η > δ):

∂2Uk

∂tk∂tk−1
> 0
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Thus:

∂t∗k
∂t∗k−1

> 1

5. Cumulative Effect: Considering multiple levels from ℓ to m, the cumulative effect is:

εℓ,m =

m−1∏
k=ℓ

(
∂t∗k+1

∂t∗k

)

Each term
∂t∗k+1

∂t∗k
is greater than 1, so the product is greater than 1:

εℓ,m =

m−1∏
k=ℓ

(
∂t∗k+1

∂t∗k

)
> 1

6. Implication: This result implies that small changes in leadership analysis styles (higher

levels) can generate large effects at lower levels, amplifying the analysis times as they propagate

through the hierarchy.

Therefore, the proof of Proposition 5 is complete.

8.8 Proof of Corollary 2

Corollary 2:

The severity of analysis paralysis is:

(a) Increasing in organizational depth L

(b) Decreasing in span of control |D(i)|

(c) More severe in tall, narrow hierarchies than flat, wide ones

Let’s prove this corollary step by step.

(a) Severity of analysis paralysis is increasing in organizational depth L

1. Total Analysis Amplification: The total analysis amplification is captured by the elasticity

of analysis time with respect to the initial level’s analysis time. From Proposition 5:

ε1,L =

L−1∏
k=1

(
∂t∗k+1

∂t∗k

)

2. Geometric Increase with Depth: As the organizational depth L increases, the number of
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multiplicative terms in the product increases. Since each term
∂t∗k+1

∂t∗k
> 1:

ε1,L =

L−1∏
k=1

(
∂t∗k+1

∂t∗k

)
> (1 + ϵ)L

This indicates that the total amplification increases geometrically with L, leading to greater severity

of analysis paralysis.

(b) Severity of analysis paralysis is decreasing in span of control |D(i)|

1. Impact of Span of Control: The span of control |D(i)| refers to the number of direct

subordinates an agent i has. A larger span of control means more agents reporting directly to i.

2. Distributed Responsibilities: With a larger span of control, the responsibilities and

analysis burdens are distributed among more subordinates, reducing the individual pressure on each

agent.

3. Reduction in Amplification: This distribution effect reduces the amplification of analysis

times because the coordination and delay costs are shared among a larger group:

∂t∗k+1

∂t∗k
decreases as |D(i)| increases

4. Conclusion:

Therefore, the severity of analysis paralysis decreases as the span of control |D(i)| increases.

(c) Analysis paralysis is more severe in tall, narrow hierarchies than flat, wide ones

1. Tall, Narrow Hierarchies: Tall, narrow hierarchies have many levels (high L) and a small

span of control |D(i)|.

2. Amplification and Depth: From parts (a) and (b), we know that greater organizational

depth L increases severity, while a larger span of control |D(i)| decreases it. In tall, narrow hierar-

chies, the depth effect dominates because of high L and low |D(i)|.

3. Flat, Wide Hierarchies: Flat, wide hierarchies have fewer levels (low L) and a large span

of control |D(i)|.

4. Conclusion: The severity of analysis paralysis is more pronounced in tall, narrow hierarchies

due to the higher amplification of analysis times with increased depth and reduced distribution of
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responsibilities.

Therefore, the proof of Corollary 2 is complete.

8.9 Proof of Proposition 6

Proposition 6:

Increasing delegation (higher xi) reduces analysis time at level i but may increase it at level i−1,

leading to a tradeoff between local and global efficiency.

Let’s prove this proposition step by step.

1. Delegation and Utility: Let xi ∈ [0, 1] represent the degree of authority delegated to agent

i. The utility function for agent i under delegation xi is:

Ui(di, θ, ti, ts(i), xi) = xivi(di, θ)− xici(ti)− (1− xi)hi(ti, ts(i))

2. First-Order Condition: The first-order condition for the optimal analysis time ti of agent

i is:

∂Ui

∂ti
= xi

∂vi
∂ti

− xic
′
i(ti)− (1− xi)

∂hi
∂ti

= 0

3. Impact of Delegation on Analysis Time at Level i: Differentiating the first-order

condition with respect to xi:

∂2Ui

∂ti∂xi
=
∂vi
∂ti

− c′i(ti) + hi(ti, ts(i))

Implicit differentiation yields:

∂t∗i
∂xi

= −
∂2Ui

∂ti∂xi

∂2Ui

∂t2i

4. Sign of the Derivative:

Given ∂vi
∂ti

and hi(ti, ts(i)) are typically positive, and c′i(ti) is positive and increasing:

∂2Ui

∂ti∂xi
=
∂vi
∂ti

− c′i(ti) + hi(ti, ts(i)) > 0
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Since ∂2Ui

∂t2i
< 0 by the second-order condition for a maximum:

∂t∗i
∂xi

< 0

This shows that increasing delegation (xi) reduces the analysis time at level i.

5. Impact on Analysis Time at Level i− 1:

Consider the superior s(i) at level i − 1. The first-order condition for the superior’s optimal

analysis time ts(i) is:

∂Us(i)

∂ts(i)
= xs(i)

∂vs(i)

∂ts(i)
− xs(i)c

′
s(i)(ts(i))− (1− xs(i))

∑
j∈D(s(i))

∂hs(i)

∂tj
= 0

6. Interdependence: Increasing delegation to agent i reduces their analysis time, which can

influence the best response of their superior. The superior may need to compensate for the reduced

analysis time by increasing their own analysis time:

∂2Us(i)

∂ts(i)∂ti
> 0

7. Overall Tradeoff:

Thus, increasing delegation (xi) reduces the analysis time at level i, but may lead to an increase

in analysis time at level i− 1, creating a tradeoff between local and global efficiency.

Therefore, the proof of Proposition 6 is complete.

8.10 Proof of Theorem 3

Theorem 3:

In both network and hierarchical structures, equilibrium analysis times exhibit three distinct

inefficiencies:

(a) Direct externalities:
∂Uj

∂ti
< 0

(b) Strategic amplification:
∂t∗j
∂ti

> 0

(c) Implementation delays: ∂g
∂(maxi ti)

< 0
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The welfare loss L =W (t∗, d∗, θ)−W (tFB , dFB , θ) can be decomposed as:

L = Ldirect + Lstrategic + Ldelay

where Ldirect captures direct externalities, Lstrategic represents losses from strategic responses, and

Ldelay measures implementation costs.

Let’s prove this theorem step by step.

1. Welfare Function: The organization’s welfare function aggregates individual utilities while

accounting for overall organizational performance:

W (t, d, θ) =

N∑
i=1

λiUi(di, θ, ti, t−i) + Π(d, t)

where λi represents agent i’s welfare weight and Π(d, t) captures organization-wide performance,

including: - Implementation timing: g(maxi ti) - Decision quality: f(d, θ) - Coordination value:∑
i,j wijm(|di − dj |)

2. Social Cost of Analysis Paralysis: Comparing equilibrium outcomes to the social optimum

yields the welfare loss L:

L =W (t∗, d∗, θ)−W (tFB , dFB , θ)

3. Direct Externalities: Direct externalities arise because each agent’s analysis time affects

others negatively:

∂Uj

∂ti
< 0

These externalities cause a deviation from the social optimum, leading to welfare loss:

Ldirect =
∑
i ̸=j

∂Uj

∂ti
(t∗i − tFB

i )

4. Strategic Amplification: Strategic amplification occurs because agents’ analysis times are

strategic complements:
∂t∗j
∂ti

> 0
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This interdependence amplifies the deviations from the social optimum, causing additional welfare

loss:

Lstrategic =
∑
i,j

(
∂t∗j
∂ti

− δij

)
(t∗i − tFB

i )

5. Implementation Delays: Implementation delays are caused by the overall increase in

analysis times, affecting organizational performance:

∂g

∂(maxi ti)
< 0

These delays lead to welfare loss associated with the timing of implementation:

Ldelay = g(max
i
t∗i )− g(max

i
tFB
i )

6. Total Welfare Loss Decomposition: The total welfare loss L is the sum of the direct

externalities, strategic amplification, and implementation delays:

L = Ldirect + Lstrategic + Ldelay

Therefore, the proof of Theorem 3 is complete.

8.11 Proof of Proposition 7

Proposition 7:

Among organizations with fixed size N : (a) χ(S) is minimized by modular structures with limited

cross-unit interactions.

(b) χ(S) is maximized by densely connected hierarchies.

Let’s prove this proposition step by step.

1. Analysis Sensitivity: The analysis sensitivity of an organizational structure S is defined as:

χ(S) =
∑
i,j

∣∣∣∣∂t∗j∂ti
∣∣∣∣
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2. Structural Effects on Sensitivity: The structure of the organization influences the cross-partial

derivatives
∂t∗j
∂ti

, which in turn affects the total analysis sensitivity χ(S).

(a) Analysis sensitivity is minimized by modular structures with limited cross-unit

interactions

1. Modular Structures: Modular structures are characterized by limited interactions between

different units. Each unit operates relatively independently, with minimal cross-unit dependencies.

2. Limited Cross-Unit Interactions: In modular structures, the cross-partial derivatives
∂t∗j
∂ti

are close to zero for agents i and j in different units. This reduces the overall analysis sensitivity

χ(S).

3. Mathematical Representation: For modular structures:

χ(S) =
∑

i,j within same unit

∣∣∣∣∂t∗j∂ti
∣∣∣∣+ ∑

i,j across units

∣∣∣∣∂t∗j∂ti
∣∣∣∣

Since
∂t∗j
∂ti

is small across units, the second sum is minimized, leading to:

χ(S) ≈
∑

i,j within same unit

∣∣∣∣∂t∗j∂ti
∣∣∣∣

This minimizes the overall analysis sensitivity.

(b) Analysis sensitivity is maximized by densely connected hierarchies

1. Densely Connected Hierarchies: Densely connected hierarchies have strong interdepen-

dencies between agents. Each agent’s analysis time significantly influences others, leading to high

values of
∂t∗j
∂ti

.

2. High Interdependencies: In densely connected hierarchies, the cross-partial derivatives

∂t∗j
∂ti

are large for many pairs of agents, increasing the overall analysis sensitivity χ(S).

3. Mathematical Representation: For densely connected hierarchies:

χ(S) =
∑
i,j

∣∣∣∣∂t∗j∂ti
∣∣∣∣

Since
∂t∗j
∂ti

is large for many pairs, the overall analysis sensitivity is maximized.
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4. Conclusion: The structure S that minimizes χ(S) is a modular structure with limited

cross-unit interactions, while the structure S that maximizes χ(S) is a densely connected hierarchy.

Therefore, the proof of Proposition 7 is complete.

8.12 Proof of Proposition 8

Proposition 8: Optimal incentives feature: (a) Penalties for excessive analysis relative to orga-

nizational averages. (b) Rewards for timely decision-making. (c) Team-based components that

internalize delay externalities.

Let’s prove this proposition step by step.

1. Incentive Design Framework: Let ri(ti, di) be agent i’s reward function. The optimal

incentive scheme solves:

max
ri

W (t∗(r), d∗(r), θ) s.t. IC, IR

where W is the welfare function, and IC and IR are the incentive compatibility and individual

rationality constraints, respectively.

2. Incentive Compatibility (IC): The incentive compatibility constraint ensures that agents

choose their analysis times ti and decisions di to maximize their own utilities, considering the rewards

ri:

t∗i , d
∗
i ∈ argmax

ti,di

[Ui(di, θ, ti, t−i) + ri(ti, di)]

3. Individual Rationality (IR): The individual rationality constraint ensures that agents’

expected utilities, including rewards, are at least as high as their reservation utilities Ūi:

E[Ui(di, θ, ti, t−i) + ri(ti, di)] ≥ Ūi

4. First-Order Approach: Using the first-order approach, the optimal incentive scheme

ri(ti, di) is designed to align agents’ choices with the social welfare maximization. The first-order

condition for the optimal analysis time ti is:

∂[Ui(di, θ, ti, t−i) + ri(ti, di)]

∂ti
= 0
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5. Designing the Incentives: To achieve the desired alignment, the rewards ri(ti, di) must

counterbalance the misalignment between individual and social welfare. Specifically:

ri(ti, di) = −

∂Ui

∂ti
+

∑
j ̸=i

∂W

∂tj

∂t∗j
∂ti


(a) Penalties for excessive analysis relative to organizational averages

1. Excessive Analysis: Excessive analysis occurs when ti is higher than the socially optimal

time. The reward function ri should penalize such behavior:

ri(ti) = −k(ti − t̄)

where t̄ is the organizational average analysis time and k is a positive penalty coefficient.

2. Effectiveness: This penalty ensures that agents’ analysis times are aligned with the organi-

zational average, discouraging excessive analysis.

(b) Rewards for timely decision-making

1. Timely Decisions: Agents should be rewarded for making decisions promptly. The reward

function ri should include a component that incentivizes timely decisions:

ri(ti) = a− bti

where a and b are positive constants, and ti is the analysis time.

2. Effectiveness: This reward ensures that agents are motivated to make decisions in a timely

manner, reducing delays and improving efficiency.

(c) Team-based components that internalize delay externalities

1. Internalizing Externalities: Delay externalities occur when one agent’s delays affect others.

The reward function ri should include team-based components to internalize these externalities:

ri(ti) = c
∑
j ̸=i

wij(ti − tj)

where c is a positive constant, and wij represents the weight of the interaction between agents i and
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j.

2. Effectiveness: This team-based reward ensures that agents consider the impact of their

analysis times on others, promoting coordination and reducing overall delays.

Therefore, the proof of Proposition 8 is complete.

8.13 Proof of Proposition 9

Proposition 9: Optimal information design minimizes ω(Ii, Ij) across agents while maintaining

decision quality, reducing incentives for redundant analysis.

Let’s prove this proposition step by step.

1. Information Structure: Let Ii(t) represent agent i’s information structure. The informa-

tion overlap between agents i and j is defined as:

ω(Ii, Ij) = Cov(E[θ|Ii(ti)],E[θ|Ij(tj)])

2. Objective: The objective is to design information structures that minimize ω(Ii, Ij) while

maintaining decision quality. Reducing ω(Ii, Ij) decreases the redundancy in information processing

and incentivizes efficient analysis.

3. Impact of Information Overlap: High information overlap ω(Ii, Ij) leads to redundant

analysis efforts because agents receive similar signals. This redundancy can cause inefficiencies and

unnecessary costs.

4. Optimal Information Design: To achieve the desired reduction in information overlap,

the optimal information design ensures that each agent receives distinct, yet relevant, signals about

θ. This design can be formalized as minimizing the covariance of posterior beliefs:

min
Ii,Ij

ω(Ii, Ij) subject to E[θ|Ii(ti)] and E[θ|Ij(tj)] maintain decision quality

5. Mathematical Representation: The information overlap ω(Ii, Ij) depends on the joint

distribution of the signals received by agents i and j. By designing information structures such that

the signals are less correlated, the overlap can be minimized.
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6. Cross-Partial Derivative: The cross-partial derivative of utility with respect to analysis

times ti and tj is influenced by information overlap. By minimizing ω(Ii, Ij), the interaction term

∂2Ui

∂ti∂tj
is reduced, leading to more independent analysis efforts:

∂2Ui

∂ti∂tj
= f(ω(Ii, Ij))

7. Impact on Redundant Analysis: Reducing ω(Ii, Ij) lowers the incentives for redundant

analysis, as agents no longer receive overly similar signals. This encourages more efficient and distinct

analysis efforts.

8. Conclusion:

The optimal information design that minimizes ω(Ii, Ij) while maintaining decision quality re-

duces incentives for redundant analysis and promotes overall efficiency.

Therefore, the proof of Proposition 9 is complete.

8.14 Proof of Theorem 4

Theorem 4:

The relative effectiveness of structural (S), incentive (R), and informational (I) interventions

satisfies:

∆WS > ∆WR > ∆WI if σ2
θ < σ̄2 (low uncertainty)

∆WI > ∆WS > ∆WR if σ2
θ > σ̄2 (high uncertainty)

where σ2
θ represents environmental uncertainty and σ̄2 is a threshold value.

The proof of this theorem proceeds as follows:

1. Welfare Function: The organization’s welfare function W depends on the analysis times t,

decisions d, and the state of the world θ:

W (t, d, θ) =

N∑
i=1

λiUi(di, θ, ti, t−i) + Π(d, t)

2. Types of Interventions: - Structural (S): Interventions that change the organizational
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structure, such as modularization. - Incentive (R): Interventions that adjust incentives for agents.

- Informational (I): Interventions that modify information structures.

3. Impact of Interventions: Each type of intervention affects the welfare function differently.

The effectiveness of each intervention type (∆W ) is measured by the change in welfare due to the

intervention.

4. Low Uncertainty (σ2
θ < σ̄2):

- Structural Interventions (∆WS): Structural interventions are highly effective under low un-

certainty because they directly address coordination and interaction costs. By modularizing the

organization, cross-partial derivatives are minimized, leading to significant improvements in welfare:

∆WS > ∆WR > ∆WI

- Incentive Interventions (∆WR): Incentive interventions are moderately effective under low

uncertainty. They align individual incentives with organizational goals, reducing excessive analysis

but do not address interaction costs as effectively as structural changes:

∆WS > ∆WR > ∆WI

- Informational Interventions (∆WI): Informational interventions are less effective under low

uncertainty because the marginal benefit of additional information is lower. The organization already

operates with high accuracy, so changes in information structure have limited impact:

∆WS > ∆WR > ∆WI

5. High Uncertainty (σ2
θ > σ̄2):

- Informational Interventions (∆WI): Under high uncertainty, informational interventions be-

come highly effective. Better information processing directly enhances decision quality, leading to

substantial welfare improvements:

∆WI > ∆WS > ∆WR
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- Structural Interventions (∆WS): Structural interventions are moderately effective under high

uncertainty. While they improve coordination, their impact is less pronounced compared to the

benefits of enhanced information processing:

∆WI > ∆WS > ∆WR

- Incentive Interventions (∆WR): Incentive interventions are least effective under high uncer-

tainty. Aligning incentives is important but less impactful than providing better information or

restructuring the organization:

∆WI > ∆WS > ∆WR

6. Derivation of Relative Effectiveness:

The relative effectiveness is derived by comparing the marginal impacts of each intervention type

on the welfare function. Under low uncertainty, the structural changes have the most significant

impact, followed by incentives and information. Under high uncertainty, information improvements

take precedence due to their direct effect on decision accuracy.

Therefore, the proof of Theorem 4 is complete.

8.15 Proof of Proposition 10

Proposition 10:

Under standard learning conditions: (a) Organizations converge to local optima in practice space.

(b) Convergence is faster with greater performance visibility. (c) Organizations may become trapped

in suboptimal equilibria.

Let’s prove this proposition step by step.

1. Learning Dynamics: Let µt represent organizational practices at time t, evolving according

to the differential equation:

dµt

dt
= β(W (µt)−W (µt−1))

where β is a positive constant representing the speed of learning, and W (µt) is the welfare function

at practice µt.
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(a) Convergence to Local Optima

1. Gradient Ascent:

The learning dynamics follow a gradient ascent process, where organizations update their prac-

tices based on the marginal improvement in welfare:

dµt

dt
= β∇W (µt)

2. Convergence to Local Optima: Under standard learning conditions, the gradient as-

cent algorithm converges to local optima in the practice space. This means that as t → ∞, the

organizational practices µt approach a local maximum of the welfare function W (µt).

(b) Convergence is Faster with Greater Performance Visibility

1. Performance Visibility: Greater performance visibility means that the organization has

better and more immediate feedback on the impact of changes in practices on the welfare function.

2. Impact on Learning Rate: With greater performance visibility, the organization can more

accurately estimate the gradient ∇W (µt), leading to more efficient updates in practices:

dµt

dt
= β∇W (µt) with higher accuracy

3. Faster Convergence: Higher accuracy in estimating the gradient accelerates the conver-

gence to local optima, as the organization makes more precise adjustments:

∣∣∣∣dµt

dt

∣∣∣∣ increases with greater performance visibility, leading to faster convergence

(c) Organizations may become trapped in suboptimal equilibria

1. Local Optima: The learning dynamics may lead to convergence to local optima, which

are not necessarily global optima. This is because the gradient ascent algorithm can get stuck in

suboptimal peaks of the welfare function W (µt).

2. Suboptimal Equilibria: Suboptimal equilibria are local maxima where the welfare function

W (µt) is maximized locally but not globally. The organization may become trapped in such equilibria
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due to the lack of global information about the practice space:

dµt

dt
= 0 at a local maximum but not necessarily at the global maximum

3. Conclusion: Therefore, while organizations converge to local optima, they may also become

trapped in suboptimal equilibria without mechanisms to explore beyond local maxima.

Therefore, the proof of Proposition 10 is complete.

8.16 Proof of Proposition 11

Proposition 11: Committee decision-making exhibits: (a) ”Preparation arms races” where mem-

bers escalate analysis to match perceived thoroughness of others. (b) Inverse relationship between

committee size N and decision speed. (c) Multiple equilibria distinguished by analysis intensity.

Let’s prove this proposition as follows.

1. Committee Utility: Consider a committee of N members who must reach a collective

decision d ∈ D. Each member i’s utility is:

Ui(d, θ, ti, t−i) = −α(d− θ)2 − c(ti)− γ
∑
j ̸=i

|ti − tj | − κmax
j
tj

where α represents the decision quality sensitivity, c(ti) is the cost of analysis, γ captures the

coordination cost between members, and κ represents collective delay costs.

(a) ”Preparation arms races”

1. Incentive to Match Thoroughness: Each member i has an incentive to match or exceed

the analysis time tj of other members j to avoid being perceived as less thorough. This creates a

”preparation arms race”.

2. Mathematical Representation: The coordination cost term γ
∑

j ̸=i |ti − tj | increases if ti

is significantly different from tj . Thus, each member escalates their analysis time to match others:

∂Ui

∂ti
= −c′(ti)− γ

∑
j ̸=i

sgn(ti − tj)
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where sgn(ti − tj) is the sign function. To minimize the coordination cost, ti tends to match tj .

3. Conclusion:

This leads to ”preparation arms races” where members escalate analysis to match the perceived

thoroughness of others.

(b) Inverse relationship between committee size N and decision speed

1. Decision Speed: The decision speed is inversely related to the total analysis time of the

committee members. As the committee size N increases, the coordination and delay costs increase,

leading to longer total analysis times.

2. Mathematical Representation: The collective delay cost κmaxj tj becomes more signifi-

cant as N increases, because it reflects the longest analysis time in a larger group:

∂decision speed

∂N
< 0

3. Conclusion: Therefore, there is an inverse relationship between committee size N and

decision speed.

(c) Multiple equilibria distinguished by analysis intensity

1. Best Response Function: Each committee member’s best response function BRi(t−i) is

influenced by the analysis times of other members. The first-order condition for member i is:

∂Ui

∂ti
= 0 =⇒ −α(d− θ)2 − c′(ti)− γ

∑
j ̸=i

sgn(ti − tj)− κ
∂(maxj tj)

∂ti
= 0

2. Multiple Equilibria: The best response functions can intersect the 45-degree line multiple

times due to the nonlinearities introduced by the coordination and delay costs. This creates multiple

equilibria characterized by different levels of analysis intensity:

t∗i = BRi(t−i)

3. Conclusion: These multiple equilibria are distinguished by the intensity of analysis efforts

among committee members.

Therefore, the proof of Proposition 11 is complete.
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8.17 Proof of Proposition 12

Proposition 12:

Corporate investment processes exhibit: (a) Greater analysis paralysis for novel investments

versus routine decisions. (b) Amplification of delays through approval chains. (c) Competitive

pressure reduces analysis paralysis through L(·).

Let’s prove this proposition step by step.

1. Corporate Utility: Consider a firm evaluating investment projects where managers at

different levels must analyze and approve decisions. The payoff structure is:

π(d, θ, t) = R(d, θ)− C(t)− L(max
i
ti)

where R(d, θ) is the revenue function, C(t) is the analysis cost function, and L(maxi ti) represents

time-to-market loss.

(a) Greater analysis paralysis for novel investments versus routine decisions

1. Novel vs. Routine Investments: Novel investments have higher uncertainty and require

more thorough analysis compared to routine decisions, which are more familiar and standardized.

2. Increased Analysis Time: For novel investments, the marginal benefit of additional

analysis is higher due to the need to reduce uncertainty:

∂R

∂t
for novel investments >

∂R

∂t
for routine decisions

3. Mathematical Representation: The first-order condition for optimal analysis time t is:

∂π

∂t
=
∂R

∂t
− C ′(t)− L′(max

i
ti) = 0

For novel investments, ∂R
∂t is significantly higher, leading to greater analysis time t.

4. Conclusion: Thus, novel investments result in greater analysis paralysis compared to routine

decisions.

(b) Amplification of delays through approval chains

1. Approval Chains: In a hierarchical structure, investment projects must pass through

48



multiple levels of approval, each adding its own analysis time.

2. Cumulative Delays: The delays are amplified as each level’s analysis time adds to the total

approval time. The overall delay is influenced by the maximum analysis time at any level:

L(max
i
ti)

3. Mathematical Representation: The total analysis time T is the sum of individual analysis

times ti:

T =
∑
i

ti

Delays are amplified because L(maxi ti) increases with each additional level of approval.

4. Conclusion: Therefore, delays are amplified through approval chains.

(c) Competitive pressure reduces analysis paralysis through L(·)

1. Competitive Pressure: Competitive pressure forces firms to make timely decisions to avoid

losing market opportunities. This pressure reduces the time allocated to analysis.

2. Reduced Analysis Time: The time-to-market loss function L(maxi ti) represents the cost

of delays. Under competitive pressure, firms prioritize reducing L(·) to stay competitive:

∂π

∂t
=
∂R

∂t
− C ′(t)− L′(max

i
ti)

When L′(·) is high, firms reduce t to minimize time-to-market loss.

3. Mathematical Representation: The first-order condition for optimal analysis time under

competitive pressure is:

∂R

∂t
− C ′(t)− L′(max

i
ti) = 0 with higher L′(·)

This leads to a lower optimal analysis time t.

4. Conclusion: Competitive pressure reduces analysis paralysis by increasing the marginal cost

of delays through L(·).

Therefore, the proof of Proposition 12 is complete.
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8.18 Proof of Proposition 13

Proposition 13: Product development exhibits: (a) Analysis synchronization across units. (b)

Quality-speed tradeoffs affected by cross-unit dependencies βij . (c) Bottleneck effects from the

slowest-analyzing unit.

The proof of Proposition 13 is as follows.

1. Product Development Utility: Consider cross-functional teams where different units

(engineering, marketing, design) must coordinate analysis. Each unit i’s output quality qi depends

on analysis time:

qi(ti, t−i) = fi(ti) +
∑
j ̸=i

βij min(ti, tj)

where fi(ti) is the quality function of unit i, and βij represents the dependency between units i and

j.

(a) Analysis synchronization across units

1. Synchronization Mechanism: The term
∑

j ̸=i βij min(ti, tj) ensures that the output qual-

ity of unit i depends on the minimum analysis time of itself and the other units it depends on. This

creates a synchronization mechanism.

2. Mathematical Representation: The analysis time ti must be synchronized with tj to

maximize qi:

qi(ti, t−i) = fi(ti) +
∑
j ̸=i

βij min(ti, tj)

3. Conclusion: This leads to analysis synchronization across units to ensure that the depen-

dencies βij are maximized.

(b) Quality-speed tradeoffs affected by cross-unit dependencies βij

1. Quality-Speed Tradeoff:

The quality-speed tradeoff arises because increasing analysis time ti improves quality fi(ti), but

dependencies βij require synchronization with tj .

2. Mathematical Representation: The tradeoff is influenced by the cross-unit dependencies

βij :

∂qi
∂ti

= f ′i(ti) +
∑
j ̸=i

βij
∂min(ti, tj)

∂ti
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When ti < tj ,
∂ min(ti,tj)

∂ti
= 1. When ti ≥ tj ,

∂ min(ti,tj)
∂ti

= 0.

3. Conclusion:

The cross-unit dependencies βij affect the quality-speed tradeoffs, requiring careful management

to balance quality improvements and analysis speed.

(c) Bottleneck effects from the slowest-analyzing unit

1. Bottleneck Mechanism: The term min(ti, tj) implies that the quality output is constrained

by the slowest-analyzing unit in the dependency chain.

2. Mathematical Representation: If one unit j is significantly slower in its analysis time tj ,

it becomes a bottleneck, limiting the overall quality improvement of unit i:

qi(ti, t−i) = fi(ti) +
∑
j ̸=i

βij min(ti, tj) ≈ fi(ti) +
∑
j ̸=i

βijtj if ti ≥ tj

3. Conclusion: Bottleneck effects occur when the slowest-analyzing unit restricts the quality

improvement of other units, necessitating synchronization to mitigate these effects.

Therefore, the proof of Proposition 13 is complete.

8.19 Proof of Proposition 14

Proposition 14: Academic review processes feature: (a) Excessive analysis due to reputation

concerns. (b) Contagion of reviewing standards. (c) Field-specific analysis norms.

Let’s prove this proposition step by step.

1. Academic Utility: Consider the utility function for an academic engaged in review and

publication:

U(q, t) = b(q)− c(t)− δ(T − t)

where q is quality, t is analysis time, and T is others’ analysis time. The function b(q) represents

the benefit from quality, c(t) is the cost of analysis, and δ(T − t) captures the cost of deviating from

the average analysis time T .

(a) Excessive analysis due to reputation concerns

1. Reputation Concerns: Academics often over-analyze to maintain or enhance their reputa-
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tion, leading to excessive analysis times. The reputation concern term δ(T − t) penalizes deviation

from the norm.

2. Mathematical Representation: The first-order condition for optimal analysis time t is:

∂U

∂t
= b′(q)

∂q

∂t
− c′(t) + δ = 0

Given that b′(q)∂q∂t is often less sensitive to t, reputation concerns δ dominate, resulting in excessive

t.

3. Conclusion: Hence, reputation concerns drive excessive analysis in academic review pro-

cesses.

(b) Contagion of reviewing standards

1. Contagion Mechanism: Reviewing standards can become contagious as academics emulate

the thoroughness and standards of their peers to avoid negative perception. This is reflected in the

term δ(T − t), where T is influenced by the analysis times of other reviewers.

2. Mathematical Representation: The equilibrium analysis time t∗ is influenced by the

average T :

t∗ = argmaxU(q, t) given T

As T increases due to higher standards, t∗ also increases, propagating the contagion effect.

3. Conclusion: Reviewing standards spread contagiously as reviewers adjust their analysis

times based on peers’ standards.

(c) Field-specific analysis norms

1. Field-Specific Norms: Different academic fields have distinct norms for acceptable analysis

and reviewing standards. These norms influence the term δ(T − t), with T varying by field.

2. Mathematical Representation: The analysis time t is field-dependent:

tfield = f(Tfield)

where Tfield represents the average analysis time in a specific field.

3. Conclusion: Field-specific norms establish varying T values, leading to differences in t across
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fields.

Therefore, the proof of Proposition 14 is complete.
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