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Abstract

This paper introduces Systemic Feedback Equilibria (SFE), a novel solution concept in game
theory where player strategies and the underlying game structure co-evolve. Departing from
static frameworks, we model games in which payoffs and action sets adjust endogenously based
on aggregate player behavior, capturing the dynamic interplay between individual optimization
and systemic adaptation. We formalize SFE as a fixed point where no player unilaterally deviates
from their strategy, and the game’s rules stabilize under a feedback mapping. Existence is es-
tablished under continuity and compactness conditions, while uniqueness holds with additional
concavity restrictions on the feedback function. We characterize SFE in a class of resource
allocation games, demonstrating how rational play can entrench collectively suboptimal out-
comes—a phenomenon we term ”systemic lock-in.” Comparative statics reveal that equilibrium
welfare is highly sensitive to the feedback rule’s curvature, offering a formal basis to distinguish
individual responsibility from structural design. Applied to a tax compliance setting, the model
predicts persistent evasion when enforcement adapts sluggishly, aligning with empirical stylized
facts. These results suggest SFE provides a unifying lens for phenomena where traditional equi-
libria fail to account for rule endogeneity, with implications for institutional design and policy
analysis.
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1 Introduction

The canonical framework of game theory assumes a fixed strategic environment: players optimize

within a given set of rules—payoffs, actions, and information—yielding equilibria such as Nash or

subgame perfect solutions. Yet, in many economic settings, the rules themselves are not immutable.

Market regulations adapt to trader behavior, tax codes evolve with evasion patterns, and social

norms shift under collective action. This interdependence between individual strategies and the

game’s structure challenges standard analyses, as outcomes may reflect not only player choices but

also the system’s endogenous response. Motivated by the adage ”Don’t hate the player, hate the

game” we propose a new solution concept—Systemic Feedback Equilibria (SFE)—to study games

where strategies and rules co-evolve.

In traditional models, the separation of player agency from structural design simplifies analysis

but obscures a critical dynamic: rational play can entrench suboptimal systems. Consider a common-

pool resource game: if overexploitation triggers stricter quotas, the resulting equilibrium may depend

as much on the quota adjustment rule as on player greed. Existing approaches, such as evolutionary

game theory (Smith, 1982) or mechanism design (Myerson, 1981), address related ideas but typically

treat either strategies or rules as exogenous. Evolutionary models focus on population dynamics

under fixed payoffs, while mechanism design optimizes rules for desired outcomes. Neither fully

captures settings where players and the game adapt concurrently in a closed loop.

This paper introduces SFE as a fixed point where strategies form a Nash equilibrium given the

current rules, and the rules stabilize under a feedback function mapping aggregate behavior to the

game’s structure. We model this co-evolution explicitly, defining the game as a tuple of strategies

and a rule adjustment process. Our main results establish conditions for SFE existence—relying

on continuity and compactness of the feedback mapping—and uniqueness, which requires concavity

restrictions. We further characterize SFE properties in a parameterized resource allocation game,

revealing a phenomenon we call ”systemic lock-in”: individually rational strategies perpetuate inef-

ficient rules, yielding lower welfare than static benchmarks.

The contribution is threefold. First, SFE extends game theory by integrating rule endogeneity

into equilibrium analysis, offering a framework to study systems where structure is neither fixed nor
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fully controlled. Second, we provide a mathematical foundation—via fixed-point theorems and com-

parative statics—to dissect how feedback dynamics shape outcomes, formalizing the intuition that

blame may lie with the ”game” rather than the ”players.” Third, an application to tax compliance

illustrates practical relevance: when enforcement adjusts slowly to evasion, SFE predicts persistent

noncompliance, consistent with stylized facts (Andreoni et al., 1998).

Our findings have implications for institutional economics and policy design. By quantifying

the role of feedback in equilibrium selection, SFE highlights when structural reform, rather than

incentivizing players, is welfare-enhancing. This resonates with debates on market regulation, en-

vironmental policy, and organizational behavior, where systemic flaws often overshadow individual

intent.

The SFE framework departs fundamentally from standard dynamic game theory, which analyzes

strategic interactions where players act sequentially or repeatedly, conditioning decisions on past

actions and anticipated responses. In dynamic games—such as repeated games (Fudenberg and

Tirole, 1991), stochastic games (Shapley, 1953), or extensive-form games with perfect information

(Selten, 1975)—the structure (payoffs, states, transition rules) remains exogenous, with dynamics

driven by intertemporal strategy adjustments or equilibrium refinements like subgame perfection

(Kreps and Wilson, 1982). SFE, by contrast, endogenizes the game’s rules themselves, allowing

aggregate behavior to reshape the strategic environment within a single equilibrium concept. This

co-evolutionary approach captures settings where the system adapts—e.g., regulations tightening

as exploitation rises—beyond the foresight, repetition, or Markovian state transitions of dynamic

models (Maskin and Tirole, 2001).

This distinction positions SFE against a rich literature while underscoring its originality. Evolu-

tionary game theory (Smith and Price, 1973; Weibull, 1995) explores strategy adaptation under fixed

payoffs via replicator dynamics or mutation-selection processes (Kandori et al., 1993), but the game

remains static. Adaptive learning models (Milgrom and Roberts, 1991; Young, 1993) allow players to

adjust beliefs or strategies over time, yet the environment is exogenous, unlike SFE’s rule evolution.

Mechanism design optimizes rules ex ante—e.g., Vickrey’s (1961) auctions, Maskin’s (1999) imple-

mentation theory, or Aghion et al.’s (2010) dynamic mechanisms—assuming a designer’s control

over the game’s structure, while endogenous institution models (Aoki, 2001; Greif and Laitin, 2004)
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treat rule shifts as emergent from coordination or historical paths, not direct strategic feedback. Re-

cent work on coupled learning (Arieli and Young, 2016) or co-adaptive games (Hart and Mas-Colell,

2003) comes closer, modeling joint strategy-rule adjustment, but typically through decentralized

imitation or bounded rationality, not SFE’s closed-loop stability. By formalizing a system where

rules and strategies co-stabilize, SFE offers a novel lens for phenomena—like persistent inefficiency

or regulatory inertia—that static, sequentially dynamic, or learning-based frameworks (Fudenberg

and Levine, 1998) struggle to explain.

The paper proceeds as follows. Section 2 defines the SFE framework and proves existence and

uniqueness. Section 3 analyzes a resource allocation game, deriving systemic lock-in and comparative

statics. Section 4 applies the model to tax compliance, comparing SFE predictions to empirical

patterns. Section 5 discusses extensions, including multi-stage feedback and stochastic rules. Section

6 concludes. Proofs are relegated to the Appendix.

2 Model

This section formalizes Systemic Feedback Equilibria (SFE), a solution concept where player strate-

gies and game rules co-evolve. We define the framework, establish existence and uniqueness condi-

tions, and discuss properties distinguishing SFE from standard equilibria.

2.1 Model Setup

Consider a game with a finite set of players N = {1, . . . , n}. Each player i ∈ N chooses a strategy

si from a compact, convex set Si ⊂ Rk, with S =
∏

i∈N Si the joint strategy space. The game’s

structure is parameterized by a rule vector r ∈ R, where R ⊂ Rm is compact and convex, representing

payoffs, constraints, or other features (e.g., tax rates, resource quotas). Player i’s payoff is ui(s, r) :

S ×R → R, assumed continuous in s = (s1, . . . , sn) and r.

Unlike static games, r is not fixed exogenously. Instead, rules adjust via a feedback function

f : S → R, continuous in s, mapping aggregate strategies to the game’s structure. For example, in

a resource game, f(s) might increase penalties as total extraction
∑

i si rises. The game is thus a

tuple (N,S,R, u, f), where u = (u1, . . . , un).
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2.2 Definition of SFE

A Systemic Feedback Equilibrium is a pair (s∗, r∗) ∈ S ×R satisfying two conditions:

1. Strategic Stability: Given r∗, s∗ is a Nash equilibrium:

ui(s
∗
i , s

∗
−i, r

∗) ≥ ui(si, s
∗
−i, r

∗) ∀si ∈ Si,∀i ∈ N,

where s−i = (s1, . . . , si−1, si+1, . . . , sn).

2. Systemic Consistency: The rules stabilize under feedback:

r∗ = f(s∗).

Intuitively, players optimize within the current game, and the game’s rules align with their collec-

tive behavior. Define the correspondence Γ : R ⇒ S by Γ(r) = {s ∈ S | s is a Nash equilibrium given r},

assumed nonempty (e.g., via continuity of u and compactness of S). Then, SFE is a fixed point of

the composite mapping F = f ◦ Γ : R ⇒ R, where (s∗, r∗) satisfies s∗ ∈ Γ(r∗) and r∗ = f(s∗).

2.3 Existence

Theorem 2.1: An SFE exists if ui is continuous in (s, r) and f is continuous in s.

Proof: Since Si and R are compact and convex, and ui is continuous, Γ(r) is nonempty, compact-

valued, and upper hemicontinuous by the maximum theorem (Berge, 1963). The mapping F = f ◦Γ

is thus upper hemicontinuous and compact-valued. As R is compact and convex, Kakutani’s fixed-

point theorem applies, ensuring r∗ ∈ F (r∗). For such r∗, select s∗ ∈ Γ(r∗) with r∗ = f(s∗), yielding

an SFE. Q.E.D.

2.4 Uniqueness

Theorem 2.2: If ui is concave in si, f is Lipschitz continuous with constant L < 1, and Γ is

single-valued, then SFE is unique.

Proof: Concavity of ui and compactness of Si ensure Γ(r) is single-valued and continuous (Mas-

Colell et al., 1995). Define H(r) = f(Γ(r)). If ∥f(s) − f(s′)∥ ≤ L∥s − s′∥ with L < 1, and Γ is
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continuous, H is a contraction on R (by the Banach fixed-point theorem). Thus, H has a unique

fixed point r∗, and s∗ = Γ(r∗) is unique, implying a unique (s∗, r∗). Q.E.D.

2.5 Discussion

SFE differs from Nash equilibria by coupling strategies and rules, introducing a feedback loop absent

in static or sequential frameworks. Where Nash assumes a fixed r, SFE solves for r endogenously,

potentially amplifying inefficiency if f reinforces suboptimal play (Section 3). Stability hinges on f ’s

responsiveness: if f is Lipschitz with L < 1, a tâtonnement process rt+1 = f(st(rt)) converges to r∗

(Fudenberg and Levine, 1998), unlike dynamic games relying on repetition. Efficiency depends on f ’s

alignment with social optima—misaligned feedback may yield ”systemic lock-in.” The framework’s

robustness to discontinuous f remains an open question, though upper hemicontinuity suffices for

existence (Glicksberg, 1952).

3 Analysis of a Resource Allocation Game

This section applies the Systemic Feedback Equilibrium (SFE) framework to a resource allocation

game, illustrating its mechanics and economic implications. We characterize SFE, identify ”systemic

lock-in,” and derive comparative statics to highlight the role of feedback dynamics.

3.1 Setup

Consider n symmetric players exploiting a common resource (e.g., fishery, bandwidth). Player i

chooses extraction si ∈ Si = [0, s̄], where s̄ > 0 is the capacity constraint, and s = (s1, . . . , sn) ∈

S = [0, s̄]n. The rule parameter r ∈ R = [0, r̄] represents a penalty rate (e.g., fines, taxes), with

r̄ > 0. Payoffs are:

ui(s, r) = si −
1

2n

 n∑
j=1

sj

2

− rsi,
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where si is the direct benefit, 1
2n

(∑
j sj

)2

is a quadratic congestion cost shared equally, and rsi is

the penalty. The feedback function adjusts r based on total extraction:

r = f(s) = α

 n∑
j=1

sj

 ,

with α > 0 a sensitivity parameter. If total extraction
∑

j sj exceeds r̄/α, set f(s) = r̄ (capping r at

its maximum). This captures a regulator increasing penalties as overuse rises, common in resource

management.

3.2 SFE Characterization

In SFE, (s∗, r∗) satisfies strategic stability and systemic consistency. Given r, player i maximizes

ui(si, s−i, r). The first-order condition (interior solution, as Si is compact) is:

∂ui

∂si
= 1− 1

n

n∑
j=1

sj − r = 0.

Symmetry implies si = s for all i, so
∑

j sj = ns, and:

1− s− r = 0 ⇒ s = 1− r.

Systemic consistency requires r∗ = f(s∗) = αns∗. Substituting s∗ = 1− r∗:

r∗ = αn(1− r∗).

Solving:

r∗ + αnr∗ = αn ⇒ r∗(1 + αn) = αn ⇒ r∗ =
αn

1 + αn
.

Then:

s∗ = 1− r∗ = 1− αn

1 + αn
=

1

1 + αn
.
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Check bounds: s∗ > 0 since α, n > 0, and s∗ ≤ s̄ if s̄ ≥ 1; r∗ ≤ r̄ if r̄ ≥ αn/(1 + αn). Assume these

hold (relaxed in Appendix A if needed). Thus, the SFE is:

(s∗, r∗) =

(
1

1 + αn
,

αn

1 + αn

)
.

3.3 Systemic Lock-In

Compare SFE to the social optimum, maximizing total welfare W =
∑

i ui = ns− 1
2ns

2−rns. With

r = αns:

W (s) = ns− 1

2
ns2 − αn2s2.

The optimum so satisfies:

dW

ds
= n− ns− 2αn2s = 0 ⇒ so =

1

1 + 2αn
.

Since s∗ = 1/(1+αn) < so for αn > 0, SFE under-extracts relative to the optimum. Total extraction

ns∗ = n/(1+αn) falls as α or n rises, yet congestion ns2 and penalties rns persist, reducing welfare

below W (so). We term this ”systemic lock-in”: rational play, amplified by feedback, entrenches

inefficiency. For large n or α, s∗ → 0, collapsing resource use—a tragedy of over-regulation.

3.4 Comparative Statics

How does SFE respond to α? Compute:

∂s∗

∂α
= − n

(1 + αn)2
< 0,

∂r∗

∂α
=

n

(1 + αn)2
> 0.

Higher α (stronger feedback) reduces extraction but raises penalties, tightening the system. Welfare

W (s∗) = ns∗ − 1
2n(s

∗)2 −αn2(s∗)2 decreases in α (verified numerically), as over-penalization domi-

nates. Contrast with a static Nash equilibrium at fixed r = 0: s = 1, over-extracting but avoiding

feedback-induced collapse.

The resource game reveals SFE’s power: feedback can invert the tragedy of the commons into

underuse, driven not by player intent but by systemic overreaction. This aligns with fishery quotas
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or bandwidth throttling, where rules tighten excessively. Section 4 explores a tax evasion analog.

4 Application to Tax Compliance

This section applies Systemic Feedback Equilibria (SFE) to a tax compliance game, modeling how

evasion and enforcement co-evolve. We derive SFE, analyze its implications, and connect to stylized

empirical facts, illustrating the framework’s relevance to policy design.

4.1 Setup

Consider n symmetric taxpayers, each with income normalized to 1. Player i chooses evasion si ∈

Si = [0, 1], where si is the fraction of income concealed, and s = (s1, . . . , sn) ∈ S = [0, 1]n. The rule

parameter r ∈ R = [0, r̄] is the audit probability, with r̄ ≤ 1. Payoffs are:

ui(s, r) = 1− t(1− si)− rϕsi,

where t ∈ (0, 1) is the tax rate, 1− t(1−si) is after-tax income (evading si saves tsi), and rϕsi is the

expected penalty, with ϕ > t the fine rate (e.g., recovered tax plus interest). The feedback function

adjusts audits based on aggregate evasion:

r = f(s) = α

 n∑
j=1

sj

 ,

capped at r̄ if α
∑

j sj > r̄, where α > 0 reflects enforcement responsiveness (e.g., IRS audits rising

with detected evasion).

4.2 SFE Characterization

In SFE, (s∗, r∗) satisfies strategic stability and systemic consistency. Given r, player i maximizes

ui(si, s−i, r). The first-order condition (interior if t < rϕ) is:

∂ui

∂si
= t− rϕ = 0 ⇒ r =

t

ϕ
.
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However, r is endogenous. Symmetry gives si = s, so
∑

j sj = ns, and r = f(s) = αns. If t−rϕ > 0

(low audits), si = 1 (corner solution); if t− rϕ < 0, si = 0. Assume an interior SFE: t = rϕ. Then:

r∗ = αns∗ and t = r∗ϕ.

Substitute:

t = (αns∗)ϕ ⇒ s∗ =
t

αnϕ
.

Thus:

r∗ = αns∗ =
t

ϕ
.

Verify bounds: s∗ ≤ 1 if αnϕ ≥ t, and r∗ ≤ r̄ if r̄ ≥ t/ϕ. Assume these hold (relaxed in Appendix

B if needed). The SFE is:

(s∗, r∗) =

(
t

αnϕ
,
t

ϕ

)
.

4.3 Implications and Systemic Lock-In

Aggregate evasion is ns∗ = t/(αϕ). For αϕ < t, s∗ > 1, implying a corner solution (s∗ = 1, r∗ = αn),

but we focus on interior cases. Welfare (tax revenue minus enforcement costs, say cr, with c > 0) is:

W = tn(1− s∗)− cr∗ = tn

(
1− t

αnϕ

)
− c

t

ϕ
.

Compare to a static Nash at fixed r = t/ϕ: s = 0 (full compliance), yielding W = tn. In SFE, s∗ > 0,

reducing revenue due to feedback-driven audits. This ”systemic lock-in” reflects a self-reinforcing

cycle: evasion triggers audits, which deter evasion but sustain r∗ > 0, unlike the no-evasion static

ideal. Stronger feedback (high α) lowers s∗ but raises r∗, balancing deterrence and cost.

4.4 Empirical Alignment

SFE predicts persistent evasion (ns∗ > 0) despite enforcement, matching stylized facts: U.S. tax gaps

hover at 15% of liability (IRS, 2021), suggesting αϕ fails to eliminate s∗. Slow audit adjustments (α

small) yield higher s∗, consistent with lagged IRS responses (Andreoni et al., 1998). Comparative
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statics show:

∂s∗

∂α
= − t

nϕα2
< 0,

∂r∗

∂α
= 0,

implying faster enforcement reduces evasion without altering r∗, aligning with deterrence studies

(Slemrod, 2007).

The tax game underscores SFE’s insight: persistent noncompliance may stem from the ”game”

(feedback dynamics) rather than ”players” (taxpayers). Policy could target α or ϕ, not just individual

behavior, echoing Section 1’s motivation.

5 Extensions

This section explores three extensions of the Systemic Feedback Equilibrium (SFE) framework:

multi-stage feedback, stochastic rules, and asymmetric players. These broaden the model’s applica-

bility to dynamic, uncertain, and heterogeneous settings, preserving its co-evolutionary core.

5.1 Multi-Stage Feedback

In the baseline SFE, rules adjust instantaneously via r = f(s). Consider a multi-stage setting where

feedback unfolds over discrete periods. At stage t = 0, 1, . . . , T , players choose st = (st1, . . . , s
t
n) ∈ S,

and rules evolve as:

rt+1 = f(st, rt),

with r0 ∈ R given. Payoffs are ui(s
t, rt), and players maximize discounted utility

∑T
t=0 δ

tui(s
t, rt),

where δ ∈ (0, 1). An SFE is a sequence {(st∗, rt∗)}Tt=0 where, for each t:

• st∗ is a Nash equilibrium given rt∗ and continuation values,

• rt+1∗ = f(st∗, rt∗), with r0∗ = r0.

For the Section 3 resource game, let f(st, rt) = (1 − β)rt + βα
∑

j s
t
j , where β ∈ (0, 1) governs

adjustment speed. In a stationary SFE (T → ∞), st∗ = s∗, rt∗ = r∗, converging to (1/(1 +

αn), αn/(1+αn)) if β = 1. Slower adjustment (β < 1) mitigates lock-in, potentially raising welfare.

Existence follows from continuity and compactness (Appendix C).
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5.2 Stochastic Rules

Now suppose feedback is noisy. Let r = f(s, ϵ), where ϵ ∼ F on [−ϵ̄, ϵ̄], and f(s, ϵ) = α
∑

j sj + ϵ,

capped at R = [0, r̄]. Players maximize expected utility:

Eϵ[ui(s, f(s, ϵ))].

An SFE is (s∗, r∗) where s∗ is a Nash equilibrium under expected payoffs, and r∗ = E[f(s∗, ϵ)]. For

the tax game (Section 4), ui = 1− t(1− si)− f(s, ϵ)ϕsi. Symmetry gives si = s, and:

t− ϕ(αns+ E[ϵ]) = 0 ⇒ s∗ =
t− ϕE[ϵ]
αnϕ

.

If E[ϵ] = 0, s∗ = t/(αnϕ). Variance σ2
ϵ affects risk-averse players (Appendix D), reducing s∗.

Existence holds via continuity (Appendix C).

5.3 Asymmetric Players

Relax symmetry, allowing heterogeneity in player types. In the resource game, suppose player i has

cost parameter ci > 0, with payoffs:

ui(s, r) = si − ci

 n∑
j=1

sj

2

− rsi,

where ci reflects sensitivity to congestion (e.g., small vs. large firms). Feedback remains r = f(s) =

α
∑

j sj . In SFE, s∗i satisfies:

1− 2ci
∑
j

s∗j − r∗ = 0 ⇒ s∗i =
1− r∗

2ci
∑

j s
∗
j

.

Define S∗ =
∑

j s
∗
j . Then r∗ = αS∗, and:

S∗ =
∑
i

1− r∗

2ciS∗ =
1− r∗

2S∗

∑
i

1

ci
.
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Let γ =
∑

i 1/ci. Systemic consistency gives:

r∗ = α
1− r∗

2r∗/α
γ =

αγ(1− r∗)

2r∗
.

Solving r∗ = αγ(1− r∗)/(2r∗):

2(r∗)2 = αγ − αγr∗ ⇒ 2(r∗)2 + αγr∗ − αγ = 0.

The positive root is:

r∗ =
−αγ +

√
(αγ)2 + 8αγ

4
, S∗ =

r∗

α
.

Then s∗i = (1−r∗)/(2ciS
∗). High-ci players extract less, yet feedback ties r∗ to total use, amplifying

lock-in if γ (heterogeneity) grows. Existence is assured (Appendix C).

5.4 Discussion

Multi-stage SFE captures regulatory lag, stochastic SFE models uncertainty, and asymmetric SFE

reflects heterogeneous agents—all retaining the ”game-driven” insight. Future work could explore

non-stationary paths, correlated shocks, or learning dynamics (Appendix E).

6 Conclusion

This paper introduces Systemic Feedback Equilibria (SFE), a game-theoretic framework where

strategies and rules co-evolve, inspired by the adage ”Don’t hate the player, hate the game.” Un-

like static or dynamic models with exogenous structures, SFE captures settings where aggregate

behavior shapes the game itself—be it resource penalties, tax audits, or institutional norms. We

establish existence and uniqueness under standard conditions, demonstrate ”systemic lock-in” in a

resource allocation game, and align tax compliance predictions with empirical patterns. Extensions

to multi-stage, stochastic, and asymmetric settings broaden the framework’s scope, revealing how

feedback dynamics amplify inefficiency beyond individual intent.

SFE offers a dual contribution: theoretically, it extends equilibrium analysis to endogenous rule
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formation, bridging gaps in evolutionary and mechanism design literatures; practically, it reframes

policy debates—suggesting structural reform over agent-targeted incentives in systems like taxation

or resource management. The framework’s flexibility invites applications to markets, environmental

policy, or organizational design, where feedback loops are pervasive yet understudied.

By formalizing the interplay of play and structure, SFE underscores a core insight: when out-

comes falter, the game, not the players, may bear the blame.
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Appendices

Appendix Overview

This appendix supplements the main text with technical details and extensions for the Systemic

Feedback Equilibrium (SFE) framework. It comprises five parts:

• Appendix A: Relaxes bounds (s̄, r̄) and allows non-convex strategy sets (Si) in the Section 3

resource game, proving existence using Fan-Glicksberg (1952).

• Appendix B: Addresses corner cases and bound relaxations (αnϕ ≥ t) for the Section 4 tax

game, with generalized existence.

• Appendix C: Provides existence proofs for Section 5’s multi-stage and stochastic extensions

under continuity and compactness.

• Appendix D: Incorporates risk aversion into the stochastic SFE (Section 5.2), adjusting the

tax game solution.

• Appendix E: Sketches a learning extension where players adapt beliefs about the feedback

function, building on Section 5.

Proofs and derivations are detailed to ensure rigor, supporting the main text’s claims.

Appendix A: Resource Game with Relaxed Assumptions

Section 3 assumes s∗ ≤ s̄ and r∗ ≤ r̄. Relax these: let Si = [0,∞) (unbounded) or non-convex (e.g.,

Si = [0, 1]∪ [2, 3]), and R = [0,∞). Payoffs remain ui = si − 1
2n (

∑
j sj)

2 − rsi, with f(s) = α
∑

j sj .

For unbounded Si, assume si has an implicit upper bound via payoffs (e.g., ui < 0 if si large).

The FOC 1−s−r = 0 holds interiorly, and r∗ = αns∗ gives s∗ = 1/(1+αn), as before, if feasible. For

non-convex Si, Γ(r) may be multi-valued, but f ◦ Γ remains upper hemicontinuous. Fan-Glicksberg

(1952) ensures a fixed point r∗ ∈ f(Γ(r∗)), with s∗ ∈ Γ(r∗), if ui is continuous and S compact in

the product topology.
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Appendix B: Tax Game with Corner Cases

Section 4 assumes αnϕ ≥ t for interior s∗ ≤ 1. If αnϕ < t, s∗ = t/(αnϕ) > 1, hitting the corner

s∗ = 1, r∗ = αn. Payoff ui = 1− t(1− si)− rϕsi gives:

• If t− rϕ > 0, si = 1,

• If t− rϕ < 0, si = 0.

At s∗ = 1, r∗ = αn < t/ϕ (if αnϕ < t), consistent with evasion persisting. Existence holds: Γ(r) is

compact-valued, and f continuous, per Theorem 2.1. Unbounded R requires r capped implicitly by

f ’s range.

Appendix C: Existence for Extensions

For multi-stage SFE (Section 5.1), st∗ ∈ Γ(rt∗), rt+1∗ = f(st∗, rt∗) forms a Markov process. Conti-

nuity of ui and f , compactness of S and R, and finite T ensure a solution via backward induction.

For T → ∞, stationary SFE exists under stationarity of f (Maskin and Tirole, 2001).

For stochastic SFE (Section 5.2), E[ui] is continuous in s, and S compact, yielding a Nash

equilibrium s∗. Then r∗ = E[f(s∗, ϵ)] is well-defined if f is bounded, satisfying Theorem 2.1’s logic.

Appendix D: Risk Aversion in Stochastic SFE

Add risk aversion to Section 5.2’s tax game. Let utility be concave, e.g., vi(z) = − exp(−θz), θ > 0,

over z = 1− t(1− si)− f(s, ϵ)ϕsi. Maximize:

E[vi] = −E[exp(−θ(1− t+ tsi − (αns+ ϵ)ϕsi))].

FOC approximates (via certainty equivalent):

t− ϕ(αns∗ + E[ϵ]) + θϕ2σ2
ϵ s

∗ = 0.

If E[ϵ] = 0, s∗ = t/(αnϕ+ θϕ2σ2
ϵ ) < t/(αnϕ), reducing evasion as risk aversion (θ) or variance (σ2

ϵ )

rises.
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Appendix E: Learning Extension

Players may learn f over time. In Section 5’s resource game, suppose f(s) = α
∑

j sj , but players

perceive f(s) = α̂
∑

j sj , updating α̂ via Bayesian inference from observed rt. Initial SFE uses α̂,

converging to true s∗ as beliefs align (Fudenberg and Levine, 1998). Details require simulation, left

for future work.

Appendix A: Resource Game with Relaxed Assumptions

Section 3 assumes Si = [0, s̄] and R = [0, r̄] are compact and convex, with s∗ ≤ s̄ and r∗ ≤ r̄ ensured

by parameter restrictions. Here, we relax these bounds and convexity, proving SFE existence under

weaker conditions. The resource game retains payoffs ui(s, r) = si− 1
2n (

∑n
j=1 sj)

2−rsi and feedback

f(s) = α
∑n

j=1 sj , with α > 0.

A.1 Unbounded Strategy and Rule Sets

First, let Si = [0,∞) and R = [0,∞), removing finite bounds. The payoff ui decreases for large

si due to the quadratic congestion term: if
∑

j sj grows, ui → −∞ unless offset by small si or r.

Define Γ(r) = {s ∈ S | s is a Nash equilibrium given r}. The FOC for an interior solution is:

∂ui

∂si
= 1− 1

n

n∑
j=1

sj − r = 0, (1)

yielding si = 1− r − 1
n

∑
j ̸=i sj . Symmetry suggests si = s, so:

1− s− r = 0 ⇒ s = 1− r, (2)

and r = f(s) = αns. Solving:

r = αn(1− r) ⇒ r(1 + αn) = αn ⇒ r∗ =
αn

1 + αn
, s∗ =

1

1 + αn
. (3)

Since s∗, r∗ ≥ 0, no artificial bounds are needed if ui ensures finite choices (e.g., si < ∞ as ui

becomes negative). Existence requires compactness, so assume an implicit bound (e.g., Si = [0,M ],
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R = [0,M ], M large), adjusted post-hoc to contain (s∗, r∗). Theorem 2.1 applies: ui continuous, f

continuous, S,R compact yield an SFE.

A.2 Non-Convex Strategy Sets

Now let Si be compact but non-convex, e.g., Si = [0, 1]∪[2, 3], and R = [0, r̄]. Convexity of Si ensures

Γ(r) is single-valued under concavity (Section 2), but non-convexity makes Γ(r) a correspondence.

For fixed r, maximize:

ui(si, s−i, r) = si −
1

2n

si +
∑
j ̸=i

sj

2

− rsi. (4)

Since ui is continuous and Si compact, Γ(r) is nonempty and compact-valued. The quadratic

term couples si and s−i, but ui remains quasi-concave in si over segments (e.g., [0, 1] or [2, 3]).

However, multiple equilibria may arise: for small r, si = 3 might dominate si = 1 if congestion is

low.

Define F = f ◦ Γ : R ⇒ R. Since f is continuous and linear, and Γ is upper hemicontinuous

(maximum theorem, Berge, 1963), F is upper hemicontinuous. Fan-Glicksberg (1952) applies: for R

compact (not necessarily convex), a fixed point r∗ ∈ F (r∗) exists, with s∗ ∈ Γ(r∗) an SFE. Explicit

computation is complex due to non-convexity, but the Section 3 solution holds if s∗ ∈ [0, 1] ⊂ Si.

A.3 Discussion

Unbounded sets rely on payoff-driven bounds, while non-convexity broadens applicability (e.g., dis-

crete effort levels). Both preserve SFE’s core insight, with existence robust to these relaxations.

Appendix B: Tax Game with Corner Cases

Section 4 assumes αnϕ ≥ t to ensure an interior SFE with s∗ ≤ 1 and r∗ ≤ r̄. Here, we relax

this bound, analyze corner solutions, and confirm existence under weaker conditions. The tax game

retains ui(s, r) = 1− t(1− si)− rϕsi, Si = [0, 1], R = [0, r̄], and f(s) = α
∑n

j=1 sj , with α, ϕ, t > 0.
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B.1 Corner Solutions

If αnϕ < t, the interior s∗ = t/(αnϕ) > 1, exceeding Si’s bound. Compute Γ(r): maximize

ui = 1− t+ tsi − rϕsi. The FOC is:

∂ui

∂si
= t− rϕ, (5)

If t− rϕ > 0, then si = 1 (corner), (6)

If t− rϕ < 0, then si = 0 (corner), (7)

If t− rϕ = 0, then si ∈ [0, 1] (indifferent). (8)

For r < t/ϕ, si = 1; for r > t/ϕ, si = 0. Symmetry gives si = s, so:

s = 1, r = f(s) = αn, (9)

s = 0, r = f(s) = 0. (10)

Check consistency:

• If s∗ = 1, r∗ = αn. Then t−r∗ϕ = t−αnϕ. If t > αnϕ, si = 1 holds, an SFE: (s∗, r∗) = (1, αn).

• If s∗ = 0, r∗ = 0, but t− 0ϕ = t > 0, so si = 1, inconsistent.

Thus, for αnϕ < t and r̄ ≥ αn, (1, αn) is the SFE, with full evasion unless αn > t/ϕ (then

r∗ > t/ϕ, s∗ = 0, but r∗ = 0 contradicts). If r̄ < αn, r∗ = r̄, and s∗ = 1 if r̄ < t/ϕ.

B.2 Relaxed Bounds

Let R = [0,∞), removing r̄. For s∗ = 1, r∗ = αn, finite if αn < t/ϕ fails. If αn > t/ϕ, interior

s∗ = t/(αnϕ) holds, but r∗ = t/ϕ is unbounded unless ϕ caps enforcement implicitly. Assume

R = [0,M ], M > t/ϕ, for compactness. The interior SFE persists if αnϕ ≥ t.
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B.3 Generalized Existence

For any αnϕ, Γ(r) is a step function: s = 1 if r < t/ϕ, s = 0 if r > t/ϕ, s ∈ [0, 1] if r = t/ϕ. Γ(r)

is upper hemicontinuous (right-continuous at t/ϕ), compact-valued. f(s) = αns is continuous, so

F = f ◦ Γ : R ⇒ R is upper hemicontinuous. Kakutani applies over compact R, ensuring an SFE

(e.g., (1, αn) or (t/(αnϕ), t/ϕ) if interior).

If R = [0,∞), existence requires f ’s range to be bounded or ui to penalize large r. Alternatively,

Fan-Glicksberg (1952) holds with non-convex Si (e.g., {0, 1}), as ui remains continuous.

B.4 Discussion

Corner s∗ = 1 aligns with persistent evasion when enforcement lags (αnϕ < t), reinforcing Section

4’s lock-in. Relaxed bounds broaden applicability, with existence robust.

Appendix C: Existence for Extensions

Section 5 introduces multi-stage and stochastic SFE variants. This corresponding appendix proves

existence for both under continuity and compactness, extending Theorems 2.1 and 2.2.

C.1 Multi-Stage Feedback

In Section 5.1, players choose st ∈ S =
∏

i Si at t = 0, 1, . . . , T , with Si compact, convex, and R

compact. Payoffs are ui(s
t, rt), continuous, and rules evolve via:

rt+1 = f(st, rt), (11)

with r0 given. Players maximize
∑T

t=0 δ
tui(s

t, rt), δ ∈ (0, 1). An SFE is {(st∗, rt∗)}Tt=0 where

st∗ ∈ Γ(rt∗) (Nash given rt∗ and continuation values), and rt+1∗ = f(st∗, rt∗).

For finite T , solve by backward induction. At T , sT∗ ∈ Γ(rT∗), nonempty and compact since ui

is continuous and S compact (Berge, 1963). Set rT∗ = f(sT−1∗, rT−1∗). At t = T − 1, maximize

ui(s
T−1, rT−1) + δui(s

T∗(rT−1), f(sT−1, rT−1)). Continuity of f and ui ensures Γ(rT−1) exists.

Inductively, an SFE exists for all t.
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For T → ∞, seek a stationary SFE: st∗ = s∗, rt∗ = r∗. Then r∗ = f(s∗, r∗), and s∗ ∈ Γ(r∗).

Define F (r) = f(Γ(r), r). If f is continuous in (s, r), F is upper hemicontinuous (since Γ is), and

Kakutani applies over compact R. For f(s, r) = (1−β)r+βα
∑

j sj , stationarity holds as in Section

3 when β = 1.

C.2 Stochastic Rules

In Section 5.2, r = f(s, ϵ), ϵ ∼ F on [−ϵ̄, ϵ̄], f(s, ϵ) = α
∑

j sj + ϵ, and players maximize:

Eϵ[ui(s, f(s, ϵ))]. (12)

An SFE is (s∗, r∗) with s∗ ∈ Γ(E[f(s, ϵ)]), r∗ = E[f(s∗, ϵ)]. Since ui is continuous and f

linear in s, E[ui] is continuous over compact S. The best-response correspondence Bi(s−i) =

argmaxsi E[ui(si, s−i, f(s, ϵ))] is nonempty, compact-valued, and upper hemicontinuous. Kakutani

ensures a fixed point s∗, and r∗ = α
∑

j s
∗
j (if E[ϵ] = 0).

For unbounded R, assume f ’s range is compact (e.g., [0, r̄]) or ui penalizes large r. Existence

mirrors stochastic games (Shapley, 1953), with r as an expected state.

C.3 Discussion

Both extensions preserve SFE’s logic. Multi-stage existence parallels Markov perfect equilibria

(Maskin and Tirole, 2001), but with endogenous rules. Stochastic SFE adapts static arguments to

uncertainty, robust to noise in f .

Appendix D: Risk Aversion in Stochastic SFE

Section 5.2 assumes risk-neutral players in the stochastic SFE, where r = f(s, ϵ) = α
∑

j sj + ϵ.

Here, we introduce risk aversion, modifying the tax game from Section 4 to explore its impact on

evasion s∗.
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D.1 Setup with Risk Aversion

Retain ui(s, r) = 1 − t(1 − si) − rϕsi, Si = [0, 1], and f(s, ϵ) = α
∑

j sj + ϵ, with ϵ ∼ F on [−ϵ̄, ϵ̄],

E[ϵ] = 0, Var(ϵ) = σ2
ϵ . Instead of maximizing E[ui], players maximize a concave utility over income

zi = 1− t(1− si)− f(s, ϵ)ϕsi:

Vi(s) = E[v(zi)], (13)

where v(z) = − exp(−θz), θ > 0 is the risk aversion coefficient (exponential utility ensures constant

absolute risk aversion). The SFE is (s∗, r∗) with s∗ a Nash equilibrium under Vi, and r∗ = E[f(s∗, ϵ)].

D.2 SFE Derivation

Symmetry implies si = s, so f(s, ϵ) = αns+ ϵ, and:

zi = 1− t(1− si)− (αns+ ϵ)ϕsi. (14)

Then:

Vi(si, s−i) = −E[exp(−θ(1− t+ tsi − (αns+ ϵ)ϕsi))]. (15)

For s−i = s, maximize Vi(si, s). The FOC is:

∂Vi

∂si
= θE[exp(−θzi)(t− ϕ(αns+ ϵ))] = 0. (16)

Factor out the expectation:

E[exp(−θzi)(t− ϕ(αns+ ϵ))] = tE[exp(−θzi)]− ϕE[exp(−θzi)(αns+ ϵ)] = 0. (17)

Since ϵ is independent, approximate for small σ2
ϵ (via Taylor expansion around ϵ = 0):

E[exp(−θzi)] ≈ exp(−θ(1− t+ tsi − αnsϕsi))

(
1 +

θ2ϕ2s2iσ
2
ϵ

2

)
, (18)

E[exp(−θzi)ϵ] ≈ 0. (19)
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Thus:

t− ϕαns− ϕ
E[exp(−θzi)ϵ]

E[exp(−θzi)]
≈ t− ϕαns = 0, (20)

but risk aversion adjusts this. Using certainty equivalent, Vi ≈ v(E[zi]− θ
2Var(zi)), where:

E[zi] = 1− t+ tsi − αnsϕsi, Var(zi) = ϕ2s2iσ
2
ϵ . (21)

Maximize z̃i = 1− t+ tsi − αnsϕsi − θ
2ϕ

2s2iσ
2
ϵ . FOC:

t− ϕαns∗ − θϕ2s∗σ2
ϵ = 0, (22)

s∗ =
t

αnϕ+ θϕ2σ2
ϵ

. (23)

Then r∗ = αns∗ = αnt
αnϕ+θϕ2σ2

ϵ
.

D.3 Implications

Compared to s∗ = t
αnϕ (Section 5.2), risk aversion (θ > 0) and variance (σ2

ϵ > 0) reduce evasion, as

the penalty’s uncertainty deters risk-averse players. If θ = 0 or σ2
ϵ = 0, it reverts to the risk-neutral

case. Bounds hold if αnϕ+ θϕ2σ2
ϵ ≥ t.

D.4 Existence

Vi is continuous (exponential utility is bounded), and S compact, so Γ(E[f ]) is nonempty and upper

hemicontinuous. Kakutani ensures an SFE (Appendix C).

D.5 Discussion

Risk aversion tempers systemic lock-in, aligning with deterrence effects in tax compliance (Slemrod,

2007).
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Appendix E: Learning Extension

Section 5 assumes players know the feedback function f(s). Here, we extend SFE to a learning

setting where players update beliefs about f based on observed rules, using the Section 3 resource

game as a base.

E.1 Setup with Learning

Retain ui(s, r) = si− 1
2n (

∑n
j=1 sj)

2−rsi, Si = [0, s̄], R = [0, r̄], and true feedback f(s) = α
∑n

j=1 sj ,

α > 0. Players perceive r = f̂(s) = α̂
∑

j sj , where α̂ is their belief, initially α̂0, unknown to equal

α. Over discrete periods t = 0, 1, . . . , players choose st, observe rt = f(st), and update α̂t+1 via

Bayesian learning.

E.2 Learning Dynamics

At t, given α̂t, players compute an SFE assuming r = α̂t

∑
j sj . FOC:

1− s− r = 0, r = α̂tns, (24)

s = 1− α̂tns ⇒ st =
1

1 + α̂tn
, rt =

α̂tn

1 + α̂tn
. (25)

But rt = f(st) = αnst = αn
1+α̂tn

. Assume rt = αnst + ϵt, ϵt ∼ N(0, σ2) (noise from measurement or

shocks). Prior α̂0 ∼ N(µ0, τ
2
0 ). Posterior α̂t+1 given rt updates via Bayes’ rule:

rt = αnst + ϵt, st =
1

1 + α̂tn
, (26)

likelihood rt ∼ N(αnst, σ2). Posterior mean:

α̂t+1 =
τ−2
0 µ0 + (nst/σ2)rt

τ−2
0 + (nst)2/σ2

, (27)

variance τ2t+1 =
(
τ−2
0 + (nst)2

σ2

)−1

. As t → ∞, α̂t → α (consistency), and st → s∗ = 1
1+αn .
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E.3 SFE with Learning

A learning-augmented SFE is a sequence {(st∗, rt∗, α̂t)} where st∗ is Nash given α̂t, r
t∗ = f(st∗),

and α̂t+1 updates. Existence at each t follows Section 2.1 (compact S, continuous ui). Convergence

requires simulation, but α̂t stabilizes at α, recovering the true SFE.

E.4 Discussion

Learning delays lock-in if α̂0 < α (underestimated feedback), aligning with adaptive behavior (Fu-

denberg and Levine, 1998). Future work could model strategic manipulation of f ’s perception or

continuous-time learning.
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